リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Collapse of Rotating Massive Stars Leading to Black Hole Formation and Energetic Supernovae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Collapse of Rotating Massive Stars Leading to Black Hole Formation and Energetic Supernovae

Fujibayashi, Sho Sekiguchi, Yuichiro Shibata, Masaru Wanajo, Shinya 京都大学 DOI:10.3847/1538-4357/acf5e5

2023.10.20

概要

We explore a possible explosion scenario resulting from core collapses of rotating massive stars that leave a black hole by performing radiation-viscous-hydrodynamics simulations in numerical relativity. We take moderately and rapidly rotating compact pre-collapse stellar models with zero-age main-sequence masses of 9M⊙ and 20M⊙ based on stellar evolution calculations as the initial conditions. We find that viscous heating in the disk formed around the central black hole is the power source for an outflow. The moderately rotating models predict a small ejecta mass of the order of 0.1M⊙ and an explosion energy of ≲10⁵¹ erg. Due to the small ejecta mass, these models may predict a short-timescale transient with a rise time of 3–5 days. This can lead to a bright (∼10⁴⁴ erg s⁻¹) transient, like superluminous supernovae in the presence of a dense massive circumstellar medium. For hypothetically rapidly rotating models that have a high mass-infall rate onto the disk, the explosion energy is ≳3 × 10⁵¹ erg, which is comparable to or larger than that of typical stripped-envelope supernovae, indicating that a fraction of such supernovae may be explosions powered by black hole accretion disks. The explosion energy is still increasing at the end of the simulations with a rate of >10⁵⁰ erg s⁻¹, and thus, it may reach ∼10⁵² erg. A nucleosynthesis calculation shows that the mass of 56Ni amounts to ≳0.1M⊙, which, together with the high explosion energy, may satisfy the required amount for broad-lined type Ic supernovae. Irrespective of the models, the lowest value of the electron fraction of the ejecta is ≳0.4; thus, synthesis of heavy r-process elements is not found in our models.

この論文で使われている画像

参考文献

Afsariardchi, N., Drout, M. R., Khatami, D. K., et al. 2021, ApJ, 918, 89

Aguilera-Dena, D. R., Langer, N., Antoniadis, J., & Müller, B. 2020, ApJ,

901, 114

Aguilera-Dena, D. R., Langer, N., Moriya, T. J., & Schootemeijer, A. 2018,

ApJ, 858, 115

14

The Astrophysical Journal, 956:100 (15pp), 2023 October 20

Fujibayashi et al.

Alcubierre, M., Brügmann, B., Holz, D., et al. 2001, IJMPD, 10, 273

Aloy, M. Á., & Obergaulinger, M. 2021, MNRAS, 500, 4365

Arcones, A., Martínez-Pinedo, G., Roberts, L. F., & Woosley, S. E. 2010,

A&A, 522, A25

Arnett, W. D. 1982, ApJ, 253, 785

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214

Balbus, S. A., & Hawley, J. F. 1998, RvMP, 70, 1

Banik, S., Hempel, M., & Bandyopadhyay, D. 2014, ApJS, 214, 22

Barnes, J., Duffell, P. C., Liu, Y., et al. 2018, ApJ, 860, 38

Baumgarte, T. W., & Shapiro, S. L. 1998, ApJ, 504, 431

Beloborodov, A. M. 2003, ApJ, 588, 931

Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433

Bollig, R., Yadav, N., Kresse, D., et al. 2021, ApJ, 915, 28

Burrows, A., Radice, D., & Vartanyan, D. 2019, MNRAS, 485, 3153

Cano, Z., Wang, S.-Q., Dai, Z.-G., & Wu, X.-F. 2017, AdAst, 2017, 8929054

Chevalier, R. A., & Irwin, C. M. 2011, ApJL, 729, L6

Christie, I. M., Lalakos, A., Tchekhovskoy, A., et al. 2019, MNRAS,

490, 4811

Colgate, S. A., Fryer, C. L., & Hand, K. P. 1997, in Thermonuclear

Supernovae, ed. P. Ruiz-Lapuente, R. Canal, & J. Isern (Dordrecht:

Kluwer), 273

Dessart, L., Hillier, D. J., Woosley, S., et al. 2015, MNRAS, 453, 2189

Dessart, L., Hillier, D. J., Woosley, S., et al. 2016, MNRAS, 458, 1618

Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706

Drout, M. R., Chornock, R., Soderberg, A. M., et al. 2014, ApJ, 794, 23

Eisenberg, M., Gottlieb, O., & Nakar, E. 2022, MNRAS, 517, 582

Fernández, R., & Metzger, B. D. 2013, MNRAS, 435, 502

Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics:

Third Edition (Cambridge: Cambridge Univ. Press)

Fujibayashi, S., Kiuchi, K., Wanajo, S., et al. 2023, ApJ, 942, 39

Fujibayashi, S., Sekiguchi, Y., Kiuchi, K., & Shibata, M. 2017, ApJ,

846, 114

Fujibayashi, S., Shibata, M., Wanajo, S., et al. 2020a, PhRvD, 101, 083029

Fujibayashi, S., Shibata, M., Wanajo, S., et al. 2020b, PhRvD, 102, 123014

Fujibayashi, S., Takahashi, K., Sekiguchi, Y., & Shibata, M. 2021, ApJ,

919, 80

Fujibayashi, S., Wanajo, S., Kiuchi, K., et al. 2020c, ApJ, 901, 122

Gottlieb, O., Lalakos, A., Bromberg, O., Liska, M., & Tchekhovskoy, A.

2022a, MNRAS, 510, 4962

Gottlieb, O., Tchekhovskoy, A., & Margutti, R. 2022b, MNRAS, 513, 3810

Hawley, J. F., Richers, S. A., Guan, X., & Krolik, J. H. 2013, ApJ, 772, 102

Hayakawa, T., & Maeda, K. 2018, ApJ, 854, 43

Hayashi, K., Fujibayashi, S., Kiuchi, K., et al. 2022, PhRvD, 106, 023008

Held, L. E., & Mamatsashvili, G. 2022, MNRAS, 517, 2309

Hilditch, D., Bernuzzi, S., Thierfelder, M., et al. 2013, PhRvD, 88, 084057

Israel, W., & Stewart, J. M. 1979, AnPhy, 118, 341

Janka, H.-T., Hanke, F., Hüdepohl, L., et al. 2012, PTEP, 2012, 01A309

Just, O., Aloy, M. A., Obergaulinger, M., & Nagataki, S. 2022a, ApJL,

934, L30

Just, O., Bauswein, A., Ardevol Pulpillo, R., Goriely, S., & Janka, H. T. 2015,

MNRAS, 448, 541

Just, O., Goriely, S., Janka, H. T., Nagataki, S., & Bauswein, A. 2022b,

MNRAS, 509, 1377

Karamehmetoglu, E., Sollerman, J., Taddia, F., et al. 2022, arXiv:2210.09402

Kawaguchi, K., Fujibayashi, S., Shibata, M., Tanaka, M., & Wanajo, S. 2021,

ApJ, 913, 100

Khatami, D. K., & Kasen, D. N. 2019, ApJ, 878, 56

Kiuchi, K., Kyutoku, K., Sekiguchi, Y., & Shibata, M. 2018, PhRvD, 97,

124039

Kohri, K., & Mineshige, S. 2002, ApJ, 577, 311

Kohri, K., Narayan, R., & Piran, T. 2005, ApJ, 629, 341

Leung, S.-C., Nomoto, K., & Suzuki, T. 2023, ApJ, 948, 80

Lyman, J. D., Bersier, D., James, P. A., et al. 2016, MNRAS, 457, 328

MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262

Margutti, R., Metzger, B. D., Chornock, R., et al. 2019, ApJ, 872, 18

Matsumoto, T., & Metzger, B. D. 2022, ApJ, 936, 114

Meyer, B. S., Krishnan, T. D., & Clayton, D. D. 1998, ApJ, 498, 808

Meza, N., & Anderson, J. P. 2020, A&A, 641, A177

Miller, J. M., Sprouse, T. M., Fryer, C. L., et al. 2020, ApJ, 902, 66

Moriya, T. J., Sorokina, E. I., & Chevalier, R. A. 2018, SSRv, 214, 59

Nagataki, S., Takahashi, R., Mizuta, A., & Takiwaki, T. 2007, ApJ, 659, 512

Navó, G., Reichert, M., Obergaulinger, M., & Arcones, A. 2023, ApJ, 951, 112

Obergaulinger, M., & Aloy, M. Á. 2020, MNRAS, 492, 4613

Obergaulinger, M., & Aloy, M. Á. 2021, MNRAS, 503, 4942

Obergaulinger, M., & Aloy, M. Á. 2022, MNRAS, 512, 2489

Obergaulinger, M., Aloy, M. A., & Müller, E. 2010, A&A, 515, A30

O’Connor, E., & Ott, C. D. 2011, ApJ, 730, 70

Perley, D. A., Mazzali, P. A., Yan, L., et al. 2019, MNRAS, 484, 1031

Piran, T., Nakar, E., Mazzali, P., & Pian, E. 2019, ApJL, 871, L25

Prentice, S. J., Maguire, K., Smartt, S. J., et al. 2018, ApJL, 865, L3

Pruet, J., Woosley, S. E., & Hoffman, R. D. 2003, ApJ, 586, 1254

Rembiasz, T., Obergaulinger, M., Cerdá-Durán, P., Müller, E., & Aloy, M. A.

2016, MNRAS, 456, 3782

Rodríguez, Ó., Maoz, D., & Nakar, E. 2022, arXiv:2209.05552

Sekiguchi, Y. 2010, PThPh, 124, 331

Sekiguchi, Y., & Shibata, M. 2011, ApJ, 737, 6

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 500, 33

Shi, J.-M., Stone, J. M., & Huang, C. X. 2016, MNRAS, 456, 2273

Shibata, M. 2000, PThPh, 104, 325

Shibata, M. 2007, PhRvD, 76, 064035

Shibata, M. 2016, Numerical Relativity (Singapore: World Scientific)

Shibata, M., Kiuchi, K., Sekiguchi, Y., & Suwa, Y. 2011, PThPh, 125, 1255

Shibata, M., Kiuchi, K., & Sekiguchi, Y.-i. 2017, PhRvD, 95, 083005

Shibata, M., & Nakamura, T. 1995, PhRvD, 52, 5428

Siegel, D. M., Barnes, J., & Metzger, B. D. 2019, Natur, 569, 241

Surman, R., McLaughlin, G. C., & Hix, W. R. 2006, ApJ, 643, 1057

Suzuki, A., Moriya, T. J., & Takiwaki, T. 2020, ApJ, 899, 56

Suzuki, T. K., & Inutsuka, S.-i. 2014, ApJ, 784, 121

Taddia, F., Stritzinger, M. D., Bersten, M., et al. 2018, A&A, 609, A136

Tampo, Y., Tanaka, M., Maeda, K., et al. 2020, ApJ, 894, 27

Thorne, K. S. 1981, MNRAS, 194, 439

Tominaga, N. 2009, ApJ, 690, 526

Tominaga, N., Maeda, K., Umeda, H., et al. 2007, ApJL, 657, L77

Viganò, D., Aguilera-Miret, R., Carrasco, F., Miñano, B., & Palenzuela, C.

2020, PhRvD, 101, 123019

Wanajo, S., Müller, B., Janka, H.-T., & Heger, A. 2018, ApJ, 852, 40

Woosley, S. E. 1993, ApJ, 405, 273

Zhang, W., MacFadyen, A., & Wang, P. 2009, ApJL, 692, L40

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る