リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「単結晶金属酸化物ナノワイヤの微細構造・表面構造制御に関する基礎的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

単結晶金属酸化物ナノワイヤの微細構造・表面構造制御に関する基礎的研究

趙, 茜茜 ZHAO, XIXI ザオ, シーシー 九州大学

2021.09.24

概要

Metal oxide nanowires are promising building blocks for various applications due to their unique physical and chemical properties. Among various nanowire growth methods, a hydrothermal method is particularly promising because the process can be performed at relatively low temperatures (<100 oC). Although efforts have been made to investigate a synthesis and control of hydrothermal single crystalline metal oxide nanowires, there are still challenging and interesting issues as to the controllability of nanowire size distributions and the surface modification and functionalization.

Firstly, I demonstrate the effect strategy of excessive ammonia addition to significantly increase on the growth rate of ZnO nanowires. We found that the ammonia addition substantially narrows the width of “concentration window”. The narrowed “concentration window” and the resultant increased growth rate by the ammonia addition can be understood in terms of synchronized effects of both (1) a reduction of zinc hydroxide complex (precursor) concentration and (2) a fast rate limiting process of ligand exchange between different zinc complexes. The present knowledge of “concentration window” will accelerate further tailoring an anisotropic crystal growth of hydrothermal ZnO nanowires. Secondly, I demonstrated a facile, rational method to synthesize monodispersed sized zinc oxide (ZnO) nanowires from randomly sized seeds. Uniformly shaped nanowire tips constructed in ammonia-dominated alkaline conditions serve as a foundation for the subsequent formation of the monodisperse nanowires. By precisely controlling the sharp tip formation and the nucleation, our method substantially narrows the distribution of ZnO nanowire diameters. The proposed concept of sharp tip based monodisperse nanowires growth can be applied to the growth of diverse metal oxide nanowires and thus paves the way for bottom-up grown metal oxide nanowires-integrated nanodevices with a reliable performance. Finally, I demonstrated an emergence of a thermally robust molecular selectivity with one carbon resolution for aliphatic chains of aldehydes on molecularly templated single crystalline ZnO nanowire surfaces with amorphous TiOx shell layers grown by atomic layer deposition. Spectroscopic, spectrometric and microstructural measurements revealed that such molecular selectivity only emerged when controlling the number of atomic layer deposition cycles with anchoring spatially isolated target-aliphatic aldehyde molecules on the ZnO surface during shell layer formations. This present method to create thermally robust molecular selectivity on abundant oxide surfaces is shown to be simple and highly reproducible and holds promise for scalability and applicability to various molecules.

参考文献

(1) Budhathoki-Uprety, J.; Shah, J.; Korsen, J. A.; Wayne, A. E.; Galassi, T. V.; Cohen, J. R.; Harvey, J. D.; Jena, P. V.; Ramanathan, L. V.; Jaimes, E. A.; Heller, D. A. Synthetic Molecular Recognition Nanosensor Paint for Microalbuminuria. Nat. Commun. 2019, 10 (1), 3605.

(2) Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. ACS Sensors 2016, 1 (3), 243–250.

(3) Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-Assembled Peptide-Based Nanostructures: Smart Nanomaterials toward Targeted Drug Delivery. Nano Today 2016, 11 (1), 41–60.

(4) Sarfo, D. K.; Izake, E. L.; O’Mullane, A. P.; Ayoko, G. A. Molecular Recognition and Detection of Pb (II) Ions in Water by Aminobenzo-18-Crown-6 Immobilised onto a Nanostructured SERS Substrate. Sens. Actuators B Chem. 2018, 255, 1945– 1952.

(5) Khan, S.; Le Calvé, S.; Newport, D. A Review of Optical Interferometry Techniques for VOC Detection. Sens. Actuator A Phys. 2020, 302.

(6) Moon, H. G.; Jung, Y.; Han, S. D.; Shim, Y. S.; Shin, B.; Lee, T.; Kim, J. S.; Lee, S.; Jun, S. C.; Park, H. H.; Kim, C.; Kang, C. Y. Chemiresistive Electronic Nose toward Detection of Biomarkers in Exhaled Breath. ACS Appl. Mater. Interfaces 2016, 8 (32), 20969–20976.

(7) Liu, J.; Liu, W.; Zhang, K.; Shi, J.; Zhang, Z. A Magnetic Drug Delivery System with “OFF–ON” State via Specific Molecular Recognition and Conformational Changes for Precise Tumor Therapy. Adv. Healthc. Mater. 2020, 9 (3), 1901316.

(8) Pluta, R.; Ułamek-Kozioł, M.; Januszewski, S.; Czuczwar, S. J. Exosomes as Possible Spread Factor and Potential Biomarkers in Alzheimer’s Disease: Current Concepts. Biomark. Med. 2018, 12 (9), 1025–1033.

(9) Han, Y.; Chen, T.; Li, Y.; Chen, L.; Wei, L.; Xiao, L. Single-Particle Enumeration- Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle. Anal. Chem. 2019, 91 (17), 11146–11153.

(10) Zhang, P.; Cui, Y.; Anderson, C. F.; Zhang, C.; Li, Y.; Wang, R.; Cui, H. Peptide- Based Nanoprobes for Molecular Imaging and Disease Diagnostics. Chem. Soc. Rev. 2018, 47 (10), 3490–3529.

(11) Liu, W.; Li, H.; Sheng, H.; Liu, X.; Chi, P.; Wang, X.; Mao, M. A Randomized Controlled Trial on Evaluation of Plasma Epstein-Barr Virus Biomarker for Early Diagnosis in Patients With Nasopharyngeal Carcinoma. Adv. Ther. 2020, 37 (10), 4280–4290.

(12) Balcioglu, M.; Rana, M.; Hizir, M. S.; Robertson, N. M.; Haque, K.; Yigit, M. V. Rapid Visual Screening and Programmable Subtype Classification of Ebola Virus Biomarkers. Adv. Healthc. Mater. 2017, 6 (2), 1600739.

(13) Cohen, J. D.; Javed, A. A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C. M.; Yip-Schneider, M. T.; Allen, P. J.; Schattner, M.; Brand, R. E.; Singhi, A. D.; Petersen, G. M.; Hong, S.-M.; Kim, S. C.; Falconi, M.; Doglioni, C.; Weiss, M. J.; Ahuja, N.; He, J.; Makary, M. A.; Maitra, A.; Hanash, S. M.; Dal Molin, M.; Wang, Y.; Li, L.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Silliman, N.; Popoli, M.; Goggins, M. G.; Hruban, R. H.; Wolfgang, C. L.; Klein, A. P.; Tomasetti, C.; Papadopoulos, N.; Kinzler, K. W.; Vogelstein, B.; Lennon, A. M. Combined Circulating Tumor DNA and Protein Biomarker-Based Liquid Biopsy for the Earlier Detection of Pancreatic Cancers. Proc. Natl. Acad. Sci. 2017, 114 (38), 10202–10207.

(14) Fu, Y.; Wang, N.; Yang, A.; Law, H. K.; Li, L.; Yan, F. Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. Adv. Mater. 2017, 29 (41), 1703787.

(15) Ziegler, A.; Koch, A.; Krockenberger, K.; Großhennig, A. Personalized Medicine Using DNA Biomarkers: A Review. Human Genetics 2012, 131 (10), 1627–1638.

(16) Constâncio, V.; Nunes, S. P.; Henrique, R.; Jerónimo, C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020, 9 (3), 624.

(17) Senf, B.; Yeo, W. H.; Kim, J. H. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors 2020, 10 (9), 127.

(18) Silva, S. S.; Lopes, C.; Teixeira, A. L.; Sousa, M. C. De; Medeiros, R. Forensic MiRNA: Potential Biomarker for Body Fluids? Forensic Sci. Int. Genet. 2015, 14, 1–10.

(19) Altuna-Azkargorta, M.; Mendioroz-Iriarte, M. Blood Biomarkers in Alzheimer’s Disease. Neurologia 2018, doi.org/10.1016/j.nrleng.2018.03.006

(20) Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and Blood Biomarkers for Parkinson’s Disease. Lancet Neurol. 2019, 18 (6), 573–586.

(21) Arias-Bujanda, N.; Regueira-Iglesias, A.; Balsa-Castro, C.; Nibali, L.; Donos, N.; Tomás, I. Accuracy of Single Molecular Biomarkers in Saliva for the Diagnosis of Periodontitis: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2020, 47 (1), 2-18.

(22) Gleerup, H. S.; Hasselbalch, S. G.; Simonsen, A. H. Biomarkers for Alzheimer’s Disease in Saliva: A Systematic Review. Dis. Markers 2019, 2019, 1–11.

(23) Yokota, K.; Uchida, H.; Sakairi, M.; Abe, M.; Tanaka, Y.; Tainaka, T.; Shirota, C.; Sumida, W.; Oshima, K.; Makita, S.; Amano, H.; Hinoki, A. Identification of Novel Neuroblastoma Biomarkers in Urine Samples. Sci. Rep. 2021, 11 (1), 1–9.

(24) Xu, M. Y.; Sun, Y. J.; Wang, P.; Yang, L.; Wu, Y. J. Metabolomic Biomarkers in Urine of Rats Following Long-Term Low-Dose Exposure of Cadmium and/or Chlorpyrifos. Ecotoxicol. Environ. Saf. 2020, 195, 110467.

(25) Mascini, M.; Tombelli, S. Biosensors for Biomarkers in Medical Diagnostics. Biomarkers. 2008, 13 (7-8), 637–657.

(26) Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E. K.; Jung, J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials. 2019, 9 (6), 813.

(27) Zuo, W.; Bai, W.; Gan, X.; Xu, F.; Wen, G.; Zhang, W. Detection of Lung Cancer by Analysis of Exhaled Gas Utilizing Extractive Electrospray Ionization-Mass Spectroscopy. J. Biomed. Nanotechnol. 2019, 15 (4), 633-646.

(28) Sakumura, Y.; Koyama, Y.; Tokutake, H.; Hida, T.; Sato, K.; Itoh, T.; Akamatsu, T.; Shin, W. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. Sensors 2017, 17 (2), 287.

(29) Smolinska, A.; Klaassen, E. M. M.; Dallinga, J. W.; van de Kant, K. D. G.; Jobsis, Q.; Moonen, E. J. C.; van Schayck, O. C. P.; Dompeling, E.; van Schooten, F. J. Profiling of Volatile Organic Compounds in Exhaled Breath As a Strategy to Find Early Predictive Signatures of Asthma in Children. Plos One 2014, 9 (4), e95668.

(30) Selvaraj, R.; Vasa, N. J.; Nagendra, S. M. S.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020, 25 (9), 2227.

(31) Krilaviciute, A.; Leja, M.; Kopp-Schneider, A.; Barash, O.; Khatib, S.; Amal, H.; Broza, Y. Y.; Polaka, I.; Parshutin, S.; Rudule, A.; Haick, H.; Brenner, H. Associations of Diet and Lifestyle Factors with Common Volatile Organic Compounds in Exhaled Breath of Average-Risk Individuals. J. Breath Res. 2019, 13 (2), 026006.

(32) Broza, Y. Y.; Har-Shai, L.; Jeries, R.; Cancilla, J. C.; Glass-Marmor, L.; Lejbkowicz, I.; Torrecilla, J. S.; Yao, X.; Feng, X.; Narita, A.; Müllen, K.; Miller, A.; Haick, H. Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chem. Neurosci. 2017, 8 (11), 2402-2413.

(33) Rezk-Hanna, M.; Mosenifar, Z.; Benowitz, N. L.; Rader, F.; Rashid, M.; Davoren, K.; Moy, N. B.; Doering, L.; Robbins, W.; Sarna, L.; Li, N.; Chang, L. C.; Elashoff, R. M.; Victor, R. G. High Carbon Monoxide Levels from Charcoal Combustion Mask Acute Endothelial Dysfunction Induced by Hookah (Waterpipe) Smoking in Young Adults. Circulation 2019, 139 (19), 2215-2224.

(34) Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Zhang, D.; Zhang, H.; Pang, W.; Duan, X. Detection of Volatile Organic Compounds by Self-Assembled Monolayer Coated Sensor Array with Concentration-Independent Fingerprints. Sci. Rep. 2016, 6 (1), 23970.

(35) Kusuma, V. A.; Freeman, B. D.; Borns, M. A.; Kalika, D. S. Influence of Chemical Structure of Short Chain Pendant Groups on Gas Transport Properties of Cross- Linked Poly (Ethylene Oxide) Copolymers. J. Memb. Sci. 2009, 327 (1-2), 195-207.

(36) Moufid, M.; Hofmann, M.; El Bari, N.; Tiebe, C.; Bartholmai, M.; Bouchikhi, B. Wastewater Monitoring by Means of E-Nose, VE-Tongue, TD-GC-MS, and SPME- GC-MS. Talanta 2021, 221, 121450.

(37) Capone, S.; Tufariello, M.; Francioso, L.; Montagna, G.; Casino, F.; Leone, A.; Siciliano, P. Aroma Analysis by GC/MS and Electronic Nose Dedicated to Negroamaro and Primitivo Typical Italian Apulian Wines. Sens. Actuators B Chem. 2013, 179, 259–269.

(38) Luo, Z.; Ang, M. J. Y.; Chan, S. Y.; Yi, Z.; Goh, Y. Y.; Yan, S.; Tao, J.; Liu, K.; Li, X.; Zhang, H.; Huang, W.; Liu, X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. Research 2020, 2020, 1–35.

(39) Petruci, J. F. D. S.; Cardoso, A. A. Portable and Disposable Paper-Based Fluorescent Sensor for in Situ Gaseous Hydrogen Sulfide Determination in Near Real-Time. Anal. Chem. 2016, 88 (23), 11714–11719.

(40) Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y. H. Aptamers as Molecular Recognition Elements for Electrical Nanobiosensors. Anal. Bioanal. Chem. 2008, 390 (4), 1023–1032.

(41) Muzzi, C.; Fuoco, A.; Monteleone, M.; Esposito, E.; Jansen, J. C.; Tocci, E. Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes (Basel). 2020, 10 (11), 328.

(42) Thaler, M.; Luppa, P. B. Highly Sensitive Immunodiagnostics at the Point of Care Employing Alternative Recognition Elements and Smartphones: Hype, Trend, or Revolution? Anal. Bioanal. Chem. 2019, 411 (29), 7623–7635.

(43) Peltomaa, R.; Benito-Peña, E.; Barderas, R.; Moreno-Bondi, M. C. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS Omega 2019, 4 (7), 11569–11580.

(44) Zhao, M.; Wang, J.; Yu, H.; He, Y.; Duan, T. A Highly Selective and Sensitive Colorimetric Assay for Specific Recognition Element-Free Detection of Uranyl Ion. Sens. Actuators B Chem. 2020, 307, 127664.

(45) Wu, Y.; Liu, J.; Huang, W.; He, Z.; Zhou, J.; Li, Y. Recognition Mechanism of Molecularly Imprinted Polymers by Aggregation-Induced Emission. J. Mater. Chem. C 2020, 8 (39), 13574–13581.

(46) Mandal, T. N.; Karmakar, A.; Sharma, S.; Ghosh, S. K. Metal-Organic Frameworks (MOFs) as Functional Supramolecular Architectures for Anion Recognition and Sensing. Chem. Rec. 2018, 18 (2), 154–164.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る