リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sibling spore isolates of Tricholoma matsutake vary significantly in their ectomycorrhizal colonization abilities on pine hosts in vitro and form multiple intimate associations in single ectomycorrhizal roots」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sibling spore isolates of Tricholoma matsutake vary significantly in their ectomycorrhizal colonization abilities on pine hosts in vitro and form multiple intimate associations in single ectomycorrhizal roots

Horimai, Yuka Misawa, Hiroki Suzuki, Kentaro Fukuda, Masaki Furukawa, Hitoshi Masuno, Kazuhiko Yamanaka, Takashi Yamada, Akiyoshi 信州大学 DOI:10.1016/j.funeco.2019.100874

2021.01.18

概要

Tricholoma matsutake is a commercially important edible ectomycorrhizal mushroom. The ecology of this species has emerged from studies of the genetic background of mycelial colonies in nature. Single putative colonies sometimes comprise several genets. This complex mycelial structure should be subjected to analysis to determine its ecophysiological significance. We tested the ectomycorrhization ability of nine T. matsutake sibling spore isolates. The ectomycorrhizal colonization ratio differed significantly among isolates, and was dependent on the soil nitrogen content. Mixed inoculations of three selected isolates into soils in which single pine seedlings were grown showed that the isolates interacted in the seedling roots. Paired inoculations of isolates #52/#99 and #52/#84, and a triple inoculation of isolates #52/#84/#99 resulted in levels of ectomycorrhizal colonization that significantly exceeded the colonization levels following single isolate inoculation. We suggest that mycelial interaction between sibling isolates is a significant phenomenon that operates within individual ectomycorrhizal pine root tips.

この論文で使われている画像

参考文献

Amend A, Garbelotto M, Fang Z, Keeley S, 2010. Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conservation Genetics 11: 795–802; https://doi.org/10.1007/s10592-009-9894-0

Anderson JB, Stasovski E, 1992. Molecular phylogeny of Northern hemisphere species of Armillaria. Mycologia 84: 505–510

Boddy L, Juliet Frankland J, Pieter van West P, 2007. Ecology of Saprotrophic Basidiomycetes. Academic Press, London.

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N, 1996. Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agricultural Research, Canberra.

Cairney, JWG, 1999. Intraspecific physiological variation: Implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9: 125–135; https://doi.org/10.1007/s005720050297

Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J, 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147: 367–379.

Dahlberg A, 1995. Somatic incompatibility in ectomycorrhizas. In: Varma A, Hock B (eds), Mycorrhiza. Springer, Berlin; https://doi.org/10.1007/978-3-662-08897-5_6

Duchesne LC, Anderson JB, 1990. Location and direction of transcription of the 5S rRNA gene in Armillaria. Mycological Research 94: 266–269

Endo N, Dokmai P, Suwannasai N, Phosri C, Horimai Y, Hirai N, Masaki F, Yamada A, 2015. Ectomycorrhization of Tricholoma matsutake with Abies veitchii and Tsuga diversifolia in the subalpine forests of Japan. Mycoscience 56: 402–412; https://doi.org/10.1016/j.myc.2014.12.004

Esser K, 2006. Heterogenic incompatibility in fungi. In: Kües U, Fischer R (eds), The Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol 1. Growth, differentiation and sexuality. Springer, Berlin; https://doi.org/10.1007/3-540-28135-5_8

Fries N, 1987. Somatic incompatibility and field distribution of the ectomycorrhizal fungus Suillus luteus (Boletaceae). New Phytologist 107: 735-739; https://doi.org/10.1111/j.1469-8137.1987.tb00911.x

Furukawa H, Masuno K, Takeuchi Y, 2016. Forest management of matsutake productive sites for the optimization to global warming. Annual Reports of the Nagano Prefecture Forestry Research Center 30: 87–100. (In Japanese)

Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K, 2002. Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycological Research 106: 435–443; https://doi.org/10.1017/S0953756202005725

Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F, 2004. The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedlings growth in vitro. Mycorrhiza 14: 397–400; https://doi.org/10.1007/s00572–004–0322–5

Guerin-Laguette A, Vaario LM, Gill WM, Lapeyrie F, Matsushita N, Suzuki K, 2000. Rapid in vitro ectomycorrhizal infection on Pinus densiflora roots by Tricholoma matsutake. Mycoscience 41: 389–393; https://doi.org/10.1007/BF02463952

Guidot A, Verner M-C, Debaude J-C, Marmeisse R, 2005. Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15: 167–177.

Hamada M, 1970. Diaries on Armillaria matsutake (5). Transactions of the Mycological Society of Japan 11: 81–86. (in Japanese)

Karst J, Jones MD, Turkington R, 2009. Ectomycorrhizal colonization and intraspecific variation in growth responses of lodgepole pine. Plant Ecology 200: 161–165; https://doi.org/10.1007/s11258-008-9443-9

Kennedy PG, Bruns TD, 2005, Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytologist 166: 631–638; https://doi.org/10.1111/j.1469-8137.2005.01355.x

Kennedy PG, Peay KG, Bruns TD, 2009. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90: 2098–2107; https://doi.org/10.1890/08-1291.1

Kobayashi H, Terasaki M, Yamada A, 2008. Survival of Tricholoma matsutake mycelia on the root systems of Japanese red pine seedlings for a year after outplanting. Kanto Shinrin Kenkyu 59: 325–326. (in Japanese)

Kobayashi H, Terasaki M, Yamada A, 2015. Two-year survival of Tricholoma matsutake ectomycorrhizas on Pinus densiflora seedlings after outplanting to a pine forest. Mushroom Science and Biotechnology 23: 108–113.

Kobayashi H, Watahiki T, Kuramochi M, Onose K, Yamada A, 2007. Production of pine seedlings with the shiro-like structure of the matsutake mushroom (Tricholoma matsutake (S. Ito et Imai) Sing.) in a large culture bottle. Mushroom Science and Biotechnology 15: 151–155.

Lian CL, Narimatsu M, Nara K, Hogetsu T, 2006. Tricholoma matsutake in a natural Pinus densiflora forest: Correspondence between above- and belowground genets, association with multiple host trees and change of existing ectomycorrhizal communities. New Phytologist 171: 825–836; https://doi.org/10.1111/j.1469– 8137.2006.01801.x

Lian C, Hogetsu T, Matsushita N, Guerin-Laguette A, Suzuki K, Yamada A, 2003. Development of microsatellite markers from an ectomycorrhizal fungus,Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza 13: 27– 31;

Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Vaario L-M, Suzuki K, Lapeyrie F, 2005. Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46: 90–96; https://doi.org/10.1007/s10267–004–0220-x

Murata H, Babasaki K, Yamada A, 2005a. Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σmarY1, the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15: 179– 186;

Murata H, Ohta A, Yamada A, Narimatsu M, Futamura N, 2005b. Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15: 505–512; https://doi.org/10.1007/s00572–005–0358–1

Murata H, Babasaki K, Saegusa T, Takemoto K, Yamada A, Ohta A, 2008. Traceability of Asian Matsutake, specialty mushrooms produced by the ectomycorrhizal basidiomycete Tricholoma matsutake, on the basis of retroelement-based DNA Markers. Applied and Environmental Microbiology 74: 2023–2031; https://doi.org/10.1128/AEM.02411–07

Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Ohira T, Shimokawa T, 2013. Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro.” Mycorrhiza 23: 235–242; https://doi.org/10.1007/s00572–012–0466–7

Murata H, Ohta A, Yamada A, Horimai Y, Katahata S, Yamaguchi M, Neda H, 2015a. Monokaryotic hyphae germinated from a single spore of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycoscience 56: 287–292; https://doi.org/10.1016/j.myc.2014.08.004

Murata H, Yamada A, Maruyama T, Neda H, 2015b. Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla var. japonica, an early-successional birch species, in cool-temperate forests. Mycorrhiza 25: 237–241;

Narimatsu M, Koiwa T, Masaki T, Sakamoto Y, Ohmori H, Tawaraya K, 2015. Relationship between climate, expansion rate, and fruiting in fairy rings (‘shiro’) of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecology 15: 18–28; https://doi.org/10.1016/j.funeco.2015.02.001

Nilsson LO, Wallander H, 2003. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist 158: 409–416;

Ogawa M, 1978. The biology of matsutake (in Japanese). Tsukiji-shokan, Tokyo Ogawa M, Hamada M, 1975. Primordia formation of Tricholoma matsutake (Ito et Imai) Sing. in pure culture. Transactions of the Mycological Society of Japan 16: 405–415. (In Japanese).

Ogawa W, Endo N, Fukuda M, Yamada A, 2018. Phylogenetic analyses of Japanese golden chanterelles and a new species description, Cantharellus anzutake sp. nov. Mycoscience 59: 153–165; https://doi.org/10.1016/j.myc.2017.08.014

Parrent L, Vilgalys R, 2007. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytologist 176: 164-174; https://doi.org/10.1111/j.1469-8137.2007.02155.x

Peter M, Ayer F, Egli S, 2001. Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below‐ground ectomycorrhizal species composition. New Phytologist 149: 311–325; https://doi.org/10.1046/j.1469-8137.2001.00030.x

Saito C, Ogawa W, Kobayashi H, Yamanaka T, Fukuda M, Yamada A, 2018. In vitro ectomycorrhization of Tricholoma matsutake strains is differentially affected by soil type. Mycoscience 59: 89–97; https://doi.org/10.1016/j.myc.2017.09.002

Saito H, Mitsumata G, 2008. Bidding customs and habitat improvement for matsutake (Tricholoma matsutake) in Japan. Economic Botany 62: 257–268; https://doi.org/10.1007/s12231-008-9034-7

Sugawara F, Abe M, Hishikawa K, Tanaka O, 2012. Development of cultivation of Tricholoma matsutake: Cultivating method of Tricholoma matsutake and fungal flora in red pine (Pinus densiflora) forests. Bulletin of the Akita Agricultural Experimental Station 21: 82–102

Suzuki K, 2005. Ectomycorrhizal ecophysiology and the puzzle of Tricholoma matsutake. Journal of the Japanese Forest Society 87: 90–102

Trudell SA, Xu J, Saar I, Justo A, Cifuentes J, 2017. North American matsutake: Names clarified and a new species described. Mycologia 109: 379–390; https://doi.org/10.1080/00275514.2017.1326780

Vaario L-M, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F, 2002. Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12: 1–5;

Vaario L-M, Pennanen T, Sarjala T, Savonen E, Heinonsalo J, 2010. Ectomycorrhization of Tricholoma matsutake and two main forest tree species in Finland: An assessment of in vitro mycorrhiza formation. Mycorrhiza 20: 511–518; https://doi.org/10.1007/s00572–001–0304–8

Vaario L-M, Yang X, Yamada A, 2017. Biogeography of the Japanese gourmet fungus, Tricholoma matsutake: A review of the distribution and functional ecology of Matsutake. In: Tedersoo L (eds.), Biogeography of mycorrhizal symbiosis. Ecological Studies (Analysis and Synthesis), vol. 230. Springer, Cham, pp: 319–344; https://doi.org/10.1007/978–3-319–56363–3_15

Vaario L-M, Sah SP, Norisada M, Narimatsu M, Matsushita N, 2019. Tricholoma matsutake may take more nitrogen in the organic form than other ectomycorrhizal fungi for its sporocarp development: the isotopic evidence. Mycorrhiza 29: 51–59; https://doi.org/10.1007/s00572-018-0870-8

Wilkinson A, Solan M, Taylor AFS, Alexander IJ, Johnson D, 2010. Intraspecific diversity regulates fungal productivity and respiration. PLoS One 5: e12604; https://doi.org/10.1371/journal.pone.0012604

Wu B, Maruyama H, Teramoto M, Hogetsu T, 2012. Structural and functional interactions between extraradical mycelia of ectomycorrhizal Pisolithus isolates. New Phytologist 194: 1070–1078; https://doi.org/10.1111/j.1469-8137.2012.04126.x

Xu J, Guo H, Yang ZL, 2007. Single nucleotide polymorphisms in the ectomycorrhizal mushroom Tricholoma matsutake. Microbiology 153: 2002–201;

Xu J, Sha T, Li Y, Zhao Z, Yang Z L, 2008. Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China. Molecular Ecology 17: 1238–1247

Yamada A, 2015. Ecology of Tricholoma matsutake as the ectomycorrhizal mushroom. JATAFF Journal 3: 30–34. (In Japanese).

Yamada A, Katsuya K, 1995. Mycorrhizal association of isolates from sporocarps and ectomycorrhizas with Pinus densiflora seedlings. Mycoscience 36: 315–323.

Yamada A, Maeda K, Ohmasa M, 1999. Ectomycorrhizal formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40: 455–463; https://doi.org/10.1007/BF02461022

Yamada A, Maeda K, Kobayashi H, Murata H, 2006. Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro.’ Mycorrhiza 16: 111–116; https://doi.org/10.1007/s00572– 005–0021-x

Yamada A, Kobayashi H, Murata H, Kalmiş E, Kalyoncu F, Fukuda M, 2010. In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20: 333–339; https://doi.org/10.1007/s00572–009–0286–6

Yamada A, Hayakawa N, Saito C, Horimai Y, Misawa H, Yamanaka T, Fukuda M, 2019. Physiological variation among Tricholoma matsutake isolates generated from basidiospores obtained from one basidioma. Mycoscience 60: 102–109; https://doi.org/10.1016/j.myc.2018.12.001

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る