リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic Diversity and Population Structure of Chinese Cryptomeria (Cryptomeria japonica var. sinensis) for Conservation Strategies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic Diversity and Population Structure of Chinese Cryptomeria (Cryptomeria japonica var. sinensis) for Conservation Strategies

CAI, Mengying 筑波大学

2021.07.29

概要

Cryptomeria japonica var. sinensis is a native forest species of China; it is widely planted in the south of the country to create forests and for wood production. Natural forests in China have, however, progressively reduced in extent over the centuries through a variety of unsustainable practices such as overgrazing, burning and exploitation. The area containing remnant forests has been occupied by new plantations and it is hard to distinguish natural stands from numerous artificial forests. In this context, ancient trees which originated from natural regeneration rather than planting will be valuable resources, and their genetic status needs to be understood. In addition, with the rapid spread of plantations, the genetic consequences of management practices need to be evaluated. However, unlike Cryptomeria in Japan, the genetics of Chinese Cryptomeria have seldom been studied, although there is ample evidence of the species’ great ecological and economic value. In this study, I employed Restriction Site Associated DNA Sequence (RAD-seq) technology and investigated seven ancient populations, ten plantations and two seed orchards in order to reveal the genetic characteristics of ancient trees and the genetic background of plantations and seed orchards.

Lower genetic variation but higher genetic differentiation in ancient tree populations of Chinese Cryptomeria were found in comparison to natural populations of Japanese Cryptomeria. Structure analysis and dendrogram construction divided the seven ancient populations into four groups corresponding to the geographical provinces in which the populations are located, but there was no obvious correlation between genetic distance and geographic distance. A demographic history analysis using a Stairway Plot showed that the effective population size of Chinese Cryptomeria has experienced a continuing decline from the Ice Age to the present. My findings suggest that the strong genetic drift caused by climate fluctuation and intense anthropogenic disturbance together contributed to the current low diversity and strong genetic structure.

Most of the plantations examined in this study were derived from neighboring ancient populations or bow-vanished natural stands, since they show a similar genetic structure to these, and contain slightly higher genetic diversity. However, two relatively young plantations (YA and ZGS) in Sichuan province were found to have originated from Tiantai mountain in Zhejiang province. Zhejiang and Fujian provinces have long been considered the two main gene pools of Chinese Cryptomeria. However, in my study, one plantation (LYS) and one seed orchard (HY) which were established in the 1950s and 1970s in Sichuan province, have a critically low diversity but are highly differentiated. My data combined with records in floras led me to hypothesize that Sichuan once supported a natural population of Chinese Cryptomeria, and although natural stands have declined sharply in recent decades, some genetic information is still present in some older plantations. More evidence is required to support this suggestion. In addition, the Xiapu seed orchard in Fujian province supports a high level of genetic diversity because of the multi-source provenances, but as a consequence, genetic structure of Chinese Cryptomeria might be disturbed if these seeds are widely used.

The findings highlight the precarious status of the genetic resource of Chinese Cryptomeria. For conservation purpose, firstly, forest zoning is recommended. Three zones should be divided: protected zone (ancient population), buffer zone (investigated plantations except ZGS and YA), and production zone (ZGS and YA). Secondly, three genetically differentiated seed zones are suggested in this study, seed orchards in each zone should be established soon in order to maintain the present genetic structure. More studies concerning population structure and gene flow will be conducted in more plantations and across a wider area, and more specific seed division and subdivision are expected in the future.

Keywords: Chinese Cryptomeria, ancient trees, plantation, seed orchard, genetic diversity, genetic structure, SNP, conservation, afforestation

この論文で使われている画像

参考文献

Aoki, K., Ueno, S., Kamijo, T., Setoguchi, H., Murakami, N., Kato, M., & Tsumura, Y. (2014). Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites. PLoS ONE, 9(1), e87429.

Brandrud, M. K., Paun, O., Lorenz, R., Baar, J., & Hedrén, M. (2019). Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Molecular Phylogenetics and Evolution, 136, 21-28.

Bryant, D., & Moulton, V. (2004). Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks. Molecular Biology and Evolution, 21(2), 255-265. doi:10.1093/molbev/msh018

Cai, M., Wen, Y., Uchiyama, K., Onuma, Y., & Tsumura, Y. (2020). Population Genetic Diversity and Structure of Ancient Tree Populations of Cryptomeria japonica var. sinensis Based on RAD-seq Data. Forests, 11(11), 1192.

Cao, X., Flament, N., Müller, D., & Li, S. (2018). The dynamic topography of eastern China since the latest Jurassic Period. Tectonics, 37(5), 1274-1291.

Chen, Y., Ma, T., Zhang, L., Kang, M., Zhang, Z., Zheng, Z., . . . Yang, Y. (2020). Genomic analyses of a “living fossil”: The endangered dove‐tree. Molecular Ecology Resources, 20(3).

Chen, Y., Yang, S. Z., Zhao, M. S., Ni, B. Y., Liu, L., & Chen, X. Y. (2008). Demographic genetic structure of Cryptomeria japonica var. sinensis in Tianmushan Nature Reserve, China. Journal of integrative plant biology, 50(9), 1171-1177.

Chinese-Fir, N. C. R. G. o. P. T. o. (1988). Pronenance Selection of Cunninghamia Lanceolata (LAMB.) Hook for Planting Area in China. Forest Research, 1(1), 4-13.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . Sherry, S. T. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158.

Dantas, L. G., Esposito, T., de Sousa, A. C. B., Félix, L., Amorim, L. L., Benko-Iseppon, A. M., . . . Pedrosa-Harand, A. (2015). Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest. Genetica, 143(1), 21-30.

Davey, J. W., & Blaxter, M. L. (2010). RADSeq: next-generation population genetics. Briefings in functional genomics, 9(5-6), 416-423.

Debreczy, Z., & Rácz, I. n. (2011). Conifers around the world: conifers of the temperate zones and adjacent regions (K. Musial Ed.). Budapest: DendroPress.

Duan, H., Cao, S., Zheng, H., Hu, D., Lin, J., Cui, B., . . . Li, Y. (2017). Genetic Characterization of Chinese fir from Six Provinces in Southern China and Construction of a Core Collection. Scientific Reports, 7(1), 13814. doi:10.1038/s41598-017-13219-0

Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 4(2), 359-361.

Eaton, D. A., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62(5), 689-706.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.

Excoffier, L., Smouse, P., & Quattro, J. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479-491.

Fan, F., Wang, Q., Li, H., Ding, G., & Wen, X. (2020). Transcriptome-Wide Identification and Expression Profiles of Masson Pine WRKY Transcription Factors in Response to Low Phosphorus Stress. Plant Molecular Biology Reporter, 1-9.

Flanagan, S. P., & Jones, A. G. (2017). Constraints on the FST–heterozygosity outlier approach. Journal of Heredity, 108(5), 561-573.

Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180(2), 977-993.

Fu, L. G., Yu, Y. F., & Mill, R. R. (1999). Taxodiaceae. In Z. Y. Wu & P. H. Raven (Eds.), Flora of China. Beijing: Science press.

Furlan, E., Stoklosa, J., Griffiths, J., Gust, N., Ellis, R., Huggins, R., & Weeks, A. (2012). Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecology and evolution, 2(4), 844-857.

Harrison, S., Yu, G., Takahara, H., & Prentice, I. (2001). Diversity of temperate plants in east Asia. Nature, 413(6852), 129-130.

Hayashi, Y. (1960). taxonomical and phytogeographical study of japanese conifers. Tokyo: Norin-Shuppan.

Howe, G. T., Yu, J., Knaus, B., Cronn, R., Kolpak, S., Dolan, P., . . . Dean, J. F. (2013). A SNP resource for Douglas-fir: de novotranscriptome assembly and SNP detection and validation. BMC Genomics, 14(1), 137.

Huang, H.-H., Xu, L.-L., Tong, Z.-K., Lin, E.-P., Liu, Q.-P., Cheng, L.-J., & Zhu, M.-

Y. (2012). De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genomics, 13(1), 648. doi:10.1186/1471-2164- 13-648

Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254-267.

Iwata, H., Hayashi, T., & Tsumura, Y. (2011). Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genetics & Genomes, 7(4), 747-758.

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806.

Kalinowski, S. T. (2005). hp‐rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187-189.

Khimoun, A., Doums, C., Molet, M., Kaufmann, B., Peronnet, R., Eyer, P., & Mona, S. (2020). Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biology Letters, 16(1), 20190741.

Kimura, M. K., Kabeya, D., Saito, T., Moriguchi, Y., Uchiyama, K., Migita, C., . . . Tsumura, Y. (2013). Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of Cryptomeria japonica. Forest Ecology and Management, 304, 10-19. doi:https://doi.org/10.1016/j.foreco.2013.04.030

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.

Kusumi, J., Tsumura, Y., & Tachida, H. (2015). Evolutionary rate variation in two conifer species, Taxodium distichum (L.) Rich. var. distichum (baldcypress) and Cryptomeria japonica (Thunb. ex Lf) D. Don (Sugi, Japanese cedar). Genes & Genetic Systems, 14-00079.

Ledig, F. T. (1998). Genetic Variation in Pinus. In D. M. Richardson (Ed.), Ecology and Biogeography of Pinus (pp. 251-280). Cambridge, UK: Cambridge University Press. Li, E.-X., Yi, S., Qiu, Y.-X., Guo, J.-T., Comes, H. P., & Fu, C.-X. (2008).

Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation. Molecular Phylogenetics and Evolution, 49(3), 702-714.

Li, H., Jiang, J., Liu, G., Ma, X., Dong, J., & Lin, S. (2005). Genetic variation and division of Pinus sylvestris provenances by ISSR markers. Journal of Forestry Research, 16, 216-218. doi:10.1007/BF02856818

Li, M., Chen, X., Huang, M., Wu, P., & Ma, X. (2017). Genetic diversity and relationships of ancient Chinese fir (Cunninghamia lanceolata) genotypes revealed by sequence-related amplified polymorphism markers. Genetic Resources and Crop Evolution, 64(5), 1087-1099. doi:10.1007/s10722-016- 0428-6

Li, Z.-Z., Gichira, A. W., Wang, Q.-F., & Chen, J.-M. (2018). Genetic diversity and population structure of the endangered basal angiosperm Brasenia schreberi (Cabombaceae) in China. PeerJ, 6, e5296.

Lindenmayer, D. B., & Laurance, W. F. (2017). The ecology, distribution, conservation and management of large old trees. Biological Reviews, 92(3), 1434-1458. doi:https://doi.org/10.1111/brv.12290

Liu, J., Lindenmayer, D., Yang, W., Ren, Y., Campbell, M., Wu, C., Yu, M. (2018). Diversity and density patterns of large old trees in China. Science of the Total Environment, 655. doi:10.1016/j.scitotenv.2018.11.147

Liu, Q., Wei, Y., Xu, L., Hao, Y., Chen, X., & Zhou, Z. (2017). Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in masson pine (Pinus massoniana lamb.). Scientific reports, 7(1), 1- 14.

Liu, Q., Zhou, Z., Wei, Y., Shen, D., Feng, Z., & Hong, S. (2015). Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of Masson pine (Pinus massoniana Lamb) by transcriptomic analysis. PLoS ONE, 10(7), e0132624.

Liu, X., & Fu, Y.-X. (2015). Exploring population size changes using SNP frequency spectra. Nature Genetics, 47(5), 555-559.

Luo, J., Gu, W., & Yao, P. (2005). Genetic differentiation and provenance division of natural population in Picea asperata. Journal of Northwest A&F University(12), 78-84.

McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66(2), 526-538.

Messier, C., Tittler, R., Kneeshaw, D., Gélinas, N., Paquette, A., Berninger, K., . . . Beaulieu, N. (2009). TRIAD zoning in Quebec: Experiences and results after 5 years. Forestry Chronicle, 85, 885. doi:10.5558/tfc85885-6

Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17(2), 240- 248.

Miura, M., Nomura, T., Kawasaki, H., & Fujisawa, Y. (2009). Survival Rate and Tree Height of Sugi (Cryptomeria japonica) Plus Trees in Different Seed Distribution Zones of Fukushima and Gifu Prefectures. Journal of Japan Forest Society(91), 318-325.

Mori, H., Yamashita, K., Saiki, S.-T., Matsumoto, A., & Ujino-Ihara, T. (2020). Climate sensitivity of Cryptomeria japonica in two contrasting environments: Perspectives from QTL mapping. PLoS ONE, 15(1), e0228278.

Moriguchi, N., Uchiyama, K., Miyagi, R., Moritsuka, E., Takahashi, A., Tamura, K., . . . Kusumi, J. (2019). Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing. Heredity, 123(3), 371-383. doi:10.1038/s41437-019-0198-y

Ohba, K. (1993). Clonal forestry with sugi (Cryptomeria japonica). In M. Ahuja & W.

Libby (Eds.), Clonal forestry (Vol. Conservation and application pp. 66–90). Berlin, Germany: Springer.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28(19), 2537-2539. doi:10.1093/bioinformatics/bts460

Peng, S., Li, Q., Li, D., Wang, Z., & Wang, D. (2003). Genetic diversity of Pinus massoniana revealed by RAPD markers. Silvae Genetica, 52(2), 60-62.

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE, 7(5), e37135. doi:10.1371/journal.pone.0037135

Potter, K. M., Campbell, A. R., Josserand, S. A., Nelson, C. D., & Jetton, R. M. (2017). Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer. Tree Genetics & Genomes, 13(5), 105. doi:10.1007/s11295-017-1189- x

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945. Retrieved from http://www.genetics.org/content/155/2/945.abstract

Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: a RADseq, variant- calling pipeline designed for population genomics of non-model organisms. PeerJ, 2, e431. doi:10.7717/peerj.431

Qiu, Y., Sun, Y., Zhang, X., Lee, J., Fu, C.-x., & Comes, H. P. (2009). Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to quaternary climate change and landbridge configurations. The New phytologist, 183 2, 480-495.

Rosenberg, N. A. (2004). distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. doi:10.1046/j.1471- 8286.2003.00566.x

ROUSSET, F. (2008). genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106. doi:10.1111/j.1471-8286.2007.01931.x

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406- 425. doi:10.1093/oxfordjournals.molbev.a040454

Sakaguchi, S., Qiu, Y.-X., Liu, Y.-H., Qi, X.-S., Kim, S.-H., Han, J., . . . Isagi, Y. (2012). Climate oscillation during the Quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Molecular Ecology, 21(15), 3823-3838. doi:10.1111/j.1365-294X.2012.05652.x

Suzuki, E., & Susukida, J. (1989). Age Structure and Regeration Process of Temperate Coniferous Stands in the Segire River Basin, Yakushima Island Jpn. J. Ecol., 39, 45-51.

Tsukada, M. (1986). Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quaternary Research, 26(1), 135-152.

Tsumura, Y. (2011). Cryptomeria. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees (pp. 49-63). Berlin: Springer.

Tsumura, Y., Kado, T., Takahashi, T., Tani, N., Ujino-Ihara, T., & Iwata, H. (2007). Genome scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics, 176(4), 2393-2403.

Tsumura, Y., Kimura, M., Nakao, K., Uchiyama, K., Ujino-Ihara, T., Wen, Y., . . . Han, W. (2020). Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria japonica in East Asia. Tree Genetics & Genomes, 16(1), 1-14.

Ueno, S., Uchiyama, K., Moriguchi, Y., Ujino-Ihara, T., Matsumoto, A., Wei, F.-J., . . . Kanamori, H. (2019). Scanning RNA-Seq and RAD-Seq approach to develop SNP markers closely linked to MALE STERILITY 1 (MS1) in Cryptomeria japonica D. Don. Breeding science, 69(1), 19-29.

Vásquez, D. L., Balslev, H., Hansen, M. M., Sklenář, P., & Romoleroux, K. (2016). Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Botany, 126(2), 135-142.

Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals.

Heredity, 119(5), 302-313. doi:10.1038/hdy.2017.52

Wang, J., Liu, J., Huang, Y., & Yang, J. (2007). The origin and natural distribution of Cryptomeria. Journal of Sichuan Forestry Science and Technology, 28(04), 92- 94.

Wang, Z., Chen, J., Liu, W., Luo, Z., Wang, P., Zhang, Y., . . . Shi, J. (2013). Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS ONE, 8(8), e71562.

Warmuth, V. M., Campana, M. G., Eriksson, A., Bower, M., Barker, G., & Manica, A. (2013). Ancient trade routes shaped the genetic structure of horses in eastern Eurasia. Molecular Ecology, 22(21), 5340-5351.

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 1358-1370.

Wu, C., Jiang, B., Yuan, W., Shen, A., Yang, S., Yao, S., & Liu, J. (2020). On the Management of Large-Diameter Trees in China’s Forests. Forests, 11(1), 111.

Xu, Y., Wan, A., & Guan, l. (2016). Genetic diversity and structure analysis of masson pine clonal seed orchard. International Journal of Environmental & Agriculture Research, 2(7), 95-100.

Yang, S., Xue, S., Kang, W., Qian, Z., & Yi, Z. (2019). Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS ONE, 14(2), e0211471.

Yang, X., Yang, Z., & Li, H. (2018). Genetic diversity, population genetic structure and protection strategies for Houpoëa officinalis (Magnoliaceae), an endangered Chinese medical plant. Journal of Plant Biology, 61(3), 159-168.

Yang, Y., Ma, T., Wang, Z., Lu, Z., Li, Y., Fu, C., . . . Liu, J. (2018). Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nature communications, 9(1), 1-9.

Zhang, J. (2014). The Analysis on Genetic Diversity of Superior Cryptomehia Fortunei Resources and Screening of Hybrid Parent. (MA thesis). Zhejiang Agriculture and Forestry University, Available from Cnki

Zhang, P., Shao, G., Zhao, G., Le Master, D. C., Parker, G. R., Dunning, J. B., & Li, Q. (2000). China's forest policy for the 21st century. Science, 288(5474), 2135- 2136.

Zhang, Y., Han, X., Sang, J., He, X., Liu, M., Qiao, G., . . . Hu, J. (2016). Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ, 4, e2097.

Zhou, W., Ji, X., Obata, S., Pais, A., Dong, Y., Peet, R., & Xiang, Q.-Y. J. (2018). Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Molecular Phylogenetics and Evolution, 126, 1-16.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る