リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural study on higher plant type heme oxygenase-1」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural study on higher plant type heme oxygenase-1

東田, 怜 大阪大学 DOI:10.18910/82034

2021.03.24

概要

ヘムオキシゲナーゼ(HO)はヘム代謝に関わる酵素であり、ヘムを鉄イオン、一酸化炭素、ビリベルジンに分解する。これまでの研究で、HOは多くの生物種に共通して保存されていることが確認されている。結晶構造が明らかにされている哺乳類型とシアノバクテリア型HOでは、それぞれ8または9本のα-ヘリックスで構成されたよく似た立体構造をとることが判っていた。基質であるヘムは、そのうち2本のα-ヘリックスで形成される“ヘムポケット”に配位し、構造既知の全てのHO間で酵素反応や立体構造の基本骨格が共通していると考察されている。

 しかし、HOのアミノ酸配列比較からは,高等植物のHOだけが特徴的なアミノ酸配列を持ち,哺乳類またシアノバクテリアに対してそれぞれ20%台と配列の保存性が著しく低いことが指摘されていた。特に基質であるヘムの配位子でなるHis残基が高等植物ではLys残基に置換されていること、さらにプロトン供給に重要なAsp残基もHis残基に置換されていることなど、高等植物型HOはヘム周辺環境が他種HOと大きく異なっていると推察されていた。しかし、これまで高等植物型HOの立体構造は解析されていないため、その構造・機能相関について詳細な議論ができていなかった。また、ヘム分解反応時に必要な電子を供給する電子供与体との相互作用についても、哺乳類型では電子供与体CPRとの複合体構造が報告されている一方で、高等植物では電子供与体であるフェレドキシン (Fd)との相互作用様式は未解明のままであった。

 本研究では、ダイズ(Glycine max)由来HO(GmHO-1)の立体構造をX線結晶構造解析により決定し、他種HOとの構造比較を行うことで、高等植物型HOがもつユニークなヘムポケット周辺構造を明らかにすることを目指した。さらに、基質であるヘムと電子供与体であるFdとの相互作用の詳細を解明するため,ITCをはじめとする各種熱測定およびNMR測定を行うこととした。その結果、鉄の異常散乱を用いたSAD法により位相決定に成功し、最終的に 1.06Å分解能で構造決定を行った。今回得られたGmHO-1の構造と他種HOの結晶構造とを比較したところ、ヘムポケットを形成している2本のα-ヘリックスのうち、N末端側のα-ヘリックスの直後に不規則な新しい構造領域が存在することが確認された。また、この不規則な構造領域の挿入により、ヘムポケットの反対側に新しい分子内トンネルを確認することができた。高等植物では、日照条件によりストロマ内のpHが7から8に変化することが知られている。ヘム分解反応に必要なプロトンを確実に供給するための構造最適化が起こったと考えられる。さらに、ヘムポケット内の静電ポテンシャルを計算したところ、高等植物型HOではヘムポケットの一部が負に帯電していることがわかった。先行研究で、反応中間体であるベルドヘムが高等植物型HOでのみ安定に結合することが報告されており、この特徴は静電的なポケット内表面物性の違いによるものであると結論づけた。

 次に、GmHO-1が示すFdとの相互作用がヘム結合時と非結合時とで異なるのかを確認するため,二状態でITC測定を行った。その結果、ヘム依存的にFdと相互作用をしていることを確認すると同時に、GmHO-1とFdとの複合体形成はエントロピーによって駆動されることを明らかにした。さらに、残基レベルでの相互作用部位を特定するために NMR測定を行ったところ、Fdに含まれている鉄硫黄クラスター周辺残基とGmHO-1内のヘム周辺で複合体界面を構成することが確認された。得られたNMRの化学シフト摂動の結果をもとに、ドッキングシミュレーションソフト HADDOCKを用いて複合体構造の予測を行ったところ、FdはGmHO-1のヘムポケットに埋もれるような形で相互作用するモデルを提供することができた。この時、鉄硫黄クラスターとヘムの距離は約5Åであり、鉄硫黄クラスターからヘムへ直接電子伝達が行われると示唆される。

 以上、高等植物型HOの立体構造を初めて解明すると同時に、高等植物型に特有の生理機能に対応した構造基盤を導き出すことができた。さらに,ITCやNMRを用いてFdとの最も確からしい複合体モデルを構築することができ、高等植物型HOがもつ特徴的なアミノ酸配列の構造的意味について,その詳細なモデルを提案することができた。

この論文で使われている画像

参考文献

1. Johnson, M. P. (2016) Photosynthesis. Essays Biochem. 60, 255–273

2. Nelson, N., and Ben-Shem, A. (2004) The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982

3. Hanke, G., and Mulo, P. (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant, Cell Environ. 36, 1071–1084

4. Barros, T., and Kühlbrandt, W. (2009) Crystallisation, structure and function of plant light-harvesting Complex II. Biochim. Biophys. Acta - Bioenerg. 1787, 753–772

5. Van Amerongen, H., and Croce, R. (2013) Light harvesting in photosystem II. Photosynth. Res. 116, 251–263

6. Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., Yamashita, K., Umena, Y., Nakabayashi, M., Yamane, T., Nakano, T., Suzuki, M., Masuda, T., Inoue, S., Kimura, T., Nomura, T., Yonekura, S., Yu, L. J., Sakamoto, T., Motomura, T., Chen, J. H., Kato, Y., Noguchi, T., Tono, K., Joti, Y., Kameshima, T., Hatsui, T., Nango, E., Tanaka, R., Naitow, H., Matsuur, Y., Yamashita, A., Yamamoto, M., Nureki, O., Yabashi, M., Ishikawa, T., Iwata, S., and Shen, J. R. (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature. 543, 131–135

7. Suga, M., Akita, F., Yamashita, K., Nakajima, Y., Ueno, G., Li, H., Yamane, T., Hirata, K., Umena, Y., Yonekura, S., Yu, L. J., Murakami, H., Nomura, T.,Kimura, T., Kubo, M., Baba, S., Kumasaka, T., Tono, K., Yabashi, M., Isobe, H., Yamaguchi, K., Yamamoto, M., Ago, H., and Shen, J. R. (2019) An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free- electron laser. Science (80-. ). 366, 334–338

8. Yano, J., and Yachandra, V. (2014) Mn4Ca cluster in photosynthesis: Where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205

9. Shen, J. R. (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23–48

10. Najafpour, M. M., Renger, G., Hołyńska, M., Moghaddam, A. N., Aro, E. M., Carpentier, R., Nishihara, H., Eaton-Rye, J. J., Shen, J. R., and Allakhverdiev, S.I. (2016) Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem. Rev. 116, 2886–2936

11. Schuller, J. M., Birrell, J. A., Tanaka, H., Konuma, T., Wulfhorst, H., Cox, N., Schuller, S. K., Thiemann, J., Lubitz, W., Sétif, P., Ikegami, T., Engel, B. D., Kurisu, G., and Nowaczyk, M. M. (2019) Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science (80-. ). 363, 257–260

12. Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K. I., Endo, T., Tasaka, M., and Shikanai, T. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature. 429, 579–582

13. Walker, B. J., Strand, D. D., Kramer, D. M., and Cousins, A. B. (2014) The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation. Plant Physiol. 165, 453–462

14. Peltier, G., Aro, E. M., and Shikanai, T. (2016) NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. Annu. Rev. Plant Biol. 67, 55–80

15. Raines, C. A. (2003) The Calvin cycle revisited. Photosynth. Res. 75, 1–10

16. Hennacy, J. H., and Jonikas, M. C. (2020) Prospects for Engineering Biophysical CO2 Concentrating Mechanisms into Land Plants to Enhance Yields. Annu. Rev. Plant Biol. 71, 461–485

17. Butler, T., Kapoore, R. V., and Vaidyanathan, S. (2020) Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol. 38, 606–622

18. Rae, B. D., Long, B. M., Badger, M. R., and Price, G. D. (2013) Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria. Microbiol. Mol. Biol. Rev. 77, 357–379

19. Mackinder, L. C. M., Chen, C., Leib, R. D., Patena, W., Blum, S. R., Rodman, M., Ramundo, S., Adams, C. M., and Jonikas, M. C. (2017) A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism. Cell. 171, 133-147.e14

20. Tsuji, Y., Nakajima, K., and Matsuda, Y. (2017) Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J. Exp. Bot. 68, 3763–3772

21. Ellis, R. J. (1979) The most abundant protein in the world. Trends Biochem. Sci. 4, 241–244

22. Bar-On, Y. M., and Milo, R. (2019) The global mass and average rate of rubisco. Proc. Natl. Acad. Sci. U. S. A. 116, 4738–4743

23. Xu, X., Scanu, S., Chung, J. S., Hirasawa, M., Knaff, D. B., and Ubbink, M. (2010) Structural and functional characterization of the ga-substituted ferredoxin from Synechocystis sp. PCC6803, a mimic of the native protein. Biochemistry. 49, 7790–7797

24. Kim, J. Y., Nakayama, M., Toyota, H., Kurisu, G., and Hase, T. (2016) Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. J. Biochem. 160, 101–109

25. Knaff, D. B., and Hirasawa, M. (1991) Ferredoxin-dependent chloroplast enzymes. BBA - Bioenerg. 1056, 93–125

26. Reinbothe, C., Bartsch, S., Eggink, L. L., Hoober, J. K., Brusslan, J., Andrade- Paz, R., Monnet, J., and Reinbothe, S. (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc. Natl. Acad. Sci. U. S. A. 103, 4777–4782

27. Davis, S. J., Kurepa, J., and Vierstra, R. D. (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl. Acad. Sci. U. S. A. 96, 6541–6546

28. Davis, S. J., Bhoo, S. H., Durski, A. M., Walker, J. M., and Vierstra, R. D. (2001) The Heme-Oxygenase Family Required for Phytochrome Chromophore Biosynthesis Is Necessary for Proper Photomorphogenesis in Higher Plants. Plant Physiol. 126, 656–669

29. Emborg, T. J., Walker, J. M., Noh, B., and Vierstra, R. D. (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in arabidopsis. Plant Physiol. 140, 856–868

30. Shekhawat, G. S., and Verma, K. (2010) Haem oxygenase (HO): An overlooked enzyme of plant metabolism and defence. J. Exp. Bot. 61, 2255–2270

31. Tanaka, R., and Tanaka, A. (2007) Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58, 321–346

32. Tenhunen, R., Marver, H. S., and Schmid, R. (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. U. S. A. 61, 748–755

33. Yoshida, T., and Kikuchi, G. (1979) Purification and properties of heme oxygenase from rat liver microsomes. J. Biol. Chem. 254, 4487–4491

34. Beale, S. I. (1993) Biosynthesis of phycobilins. Chem. Rev. 93, 785–802

35. Ortiz De Montellano, P. R. (1998) Heme Oxygenase Mechanism: Evidence for an Electrophilic, Ferrie Peroxide Species. Acc. Chem. Res. 31, 543–549

36. Muramoto, T., Tsurui, N., Terry, M. J., Yokota, A., and Kohchi, T. (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol. 130, 1958–1966

37. Ozen, M., Zhao, H., Lewis, D. B., Wong, R. J., and Stevenson, D. K. (2015) Heme oxygenase and the immune system in normal and pathological pregnancies. Front. Pharmacol. 10.3389/fphar.2015.00084

38. Troxler, R. F., Brown, A. S., and Brown, S. B. (1979) Bile pigment synthesis in plants. Mechanism of 18O incorporation into phycocyanobilin in the unicellular rhodophyte. Cyanidium caldarium. J. Biol. Chem. 254, 3411–3418

39. Beale, S. I., and Cornejo, J. (1984) Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch. Biochem. Biophys. 235, 371–384

40. Cornejo, J., Willows, R. D., and Beale, S. I. (1998) Phytobilin biosynthesis: Cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J. 15, 99–107

41. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I., and Goodman, H. M. (1999) The Arabidopsis photomorphogenic mutant HY1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell. 11, 335–347

42. Balestrasse, K. B., Yannarelli, G. G., Noriega, G. O., Batlle, A., and Tomaro, M. L. (2008) Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. BioMetals. 21, 433–441

43. Schmitt, M. P. (1997) Utilization of host iron sources by Corynebacterium diphtheriae: Identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J. Bacteriol. 179, 838–845

44. Zhu, W., Wilks, A., and Stojiljkovic, I. (2000) Degradation of heme in gram- negative bacteria: The product of the hemO gene of neisseriae is a heme oxygenase. J. Bacteriol. 182, 6783–6790

45. Ratliff, M., Zhu, W., Deshmukh, R., Wilks, A., and Stojiljkovic, I. (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: Degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol. 183, 6394–6403

46. Smith, H. (2000) Phytochromes and light signal perception. Nature. 407, 585

47. Noriega, G. O., Balestrasse, K. B., Batlle, A., and Tomaro, M. L. (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem. Biophys. Res. Commun. 323, 1003–1008

48. Yannarelli, G. G., Noriega, G. O., Batlle, A., and Tomaro, M. L. (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta. 224, 1154–1162

49. Balestrasse, K. B., Noriega, G. O., Batlle, A., and Tomaro, M. L. (2005) Involvement of heme oxygenase as antioxidant defense in soybean nodules. Free Radic. Res. 39, 145–151

50. Unno, M., Matsui, T., and Ikeda-Saito, M. (2007) Structure and catalytic mechanism of heme oxygenase. Nat. Prod. Rep. 24, 553–570

51. Ortiz De Montellano, P. R. (2000) The mechanism of heme oxygenase. Curr. Opin. Chem. Biol. 4, 221–227

52. Rhie, G. E., and Beale, S. I. (1992) Biosynthesis of phycobilins. Ferredoxin- supported NADPH-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J. Biol. Chem. 267, 16088–16093

53. Sugishima, M., Omata, Y., Kakuta, Y., Sakamoto, H., Noguchi, M., and Fukuyama, K. (2000) Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett. 471, 61–66

54. Sugishima, M., Migita, C. T., Zhang, X., Yoshida, T., and Fukuyama, K. (2004) Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur. J. Biochem. 271, 4517–4525

55. Sugishima, M., Hagiwara, Y., Zhang, X., Yoshida, T., Migita, C. T., and Fukuyama, K. (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry. 44, 4257– 4266

56. Hirotsu, S., Chu, G. C., Unno, M., Lee, D. S., Yoshida, T., Park, S. Y., Shiro, Y., and Ikeda-Saito, M. (2004) The Crystal Structures of the Ferric and Ferrous Forms of the Heme Complex of HmuO, a Heme Oxygenase of Corynebacterium diphtheriae. J. Biol. Chem. 279, 11937–11947

57. Schuller, D. J., Zhu, W., Stojiljkovic, I., Wilks, A., and Poulos, T. L. (2001) Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry. 40, 11552–11558

58. Friedman, J., Lad, L., Li, H., Wilks, A., and Poulos, T. L. (2004) Structural Basis for Novel δ-Regioselective Heme Oxygenation in the Opportunistic Pathogen Pseudomonas aeruginosa. Biochemistry. 43, 5239–5245

59. Sugishima, M., Sato, H., Higashimoto, Y., Harada, J., Wada, K., Fukuyama, K., and Noguchi, M. (2014) Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proc. Natl. Acad. Sci. U. S. A. 111, 2524–2529

60. Sugishima, M., Sato, H., Wada, K., and Yamamoto, K. (2019) Crystal structure of a NADPH-cytochrome P450 oxidoreductase (CYPOR) and heme oxygenase 1 fusion protein implies a conformational change in CYPOR upon NADPH/NADP+ binding. FEBS Lett. 593, 868–875

61. Brewitz, H. H., Hagelueken, G., and Imhof, D. (2017) Structural and functional diversity of transient heme binding to bacterial proteins. Biochim. Biophys. Acta - Gen. Subj. 1861, 683–697

62. Gohya, T., Zhang, X., Yoshida, T., and Migita, C. T. (2006) Spectroscopic characterization of a higher plant heme oxygenase isoform-1 from Glycine max (soybean) - Coordination structure of the heme complex and catabolism of heme. FEBS J. 273, 5384–5399

63. Linley, P. J., Landsberger, M., Kohchi, T., Cooper, J. B., and Terry, M. J. (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. FEBS J. 273, 2594–2606

64. Gohya, T., Sato, M., Zhang, X., and Migita, C. T. (2008) Variation of the oxidation state of verdoheme in the heme oxygenase reaction. Biochem. Biophys. Res. Commun. 376, 293–298

65. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326

66. Kabsch, W. (2010) XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132

67. Terwilliger, T. C., Adams, P. D., Read, R. J., McCoy, A. J., Moriarty, N. W., Grosse-Kunstleve, R. W., Afonine, P. V., Zwart, P. H., and Hung, L. W. (2009) Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard. Acta Crystallogr. Sect. D Biol. Crystallogr. 65, 582–601

68. Hippler, M., Klein, J., Fink, A., Allinger, T., and Hoerth, P. (2001) Towards functional proteomics of membrane protein complexes: Analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J. 28, 595–606

69. Sheldrick, G. M. (2015) Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71, 3–8

70. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501

71. Frishman, D., and Argos, P. (1995) Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Genet. 23, 566–579

72. Heinig, M., and Frishman, D. (2004) STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32, 500–502

73. Wilks, A., and Schmitt, M. P. (1998) Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J. Biol. Chem. 273, 837–841

74. Wilks, A., Ortiz De Montellano, P. R., Sun, J., and Loehr, T. M. (1996) Heme oxygenase (HO-1): His-132 stabilizes a distal water ligand and assists catalysis. Biochemistry. 35, 930–936

75. Omata, Y., Asada, S., Sakamoto, H., Fukuyama, K., and Noguchi, M. (1998) Crystallization and preliminary X-ray diffraction studies on the water soluble form of rat heme oxygenase-1 in complex with heme. Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 1017–1019

76. Keegan, R. M., and Winn, M. D. (2007) MrBUMP: An automated pipeline for molecular replacement. Acta Crystallogr. Sect. D Biol. Crystallogr. 64, 119–124

77. Sugishima, M., Sakamoto, H., Noguchi, M., and Fukuyama, K. (2003) Crystal structures of ferrous and CO-, CN--, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: Structural implications for discrimination between CO and O2 in HO-1. Biochemistry. 42, 9898–9905

78. Lad, L., Schuller, D. J., Shimizu, H., Friedman, J., Li, H., Ortiz de Montellano, P. R., and Poulos, T. L. (2003) Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J. Biol. Chem. 278, 7834–7843

79. Harada, E., Sugishima, M., Harada, J., Fukuyama, K., and Sugase, K. (2015) Distal regulation of heme binding of heme oxygenase-1 mediated by conformational fluctuations. Biochemistry. 54, 340–348

80. Schrödinger, L. (2015) The PyMOL Molecular Graphics System, Version 2.1 Schrödinger, LLC.

81. Zhou, H., Migita, C. T., Sato, M., Sun, D., Zhang, X., Ikeda-Saito, M., Fujii, H., and Yoshida, T. (2000) Participation of carboxylate amino acid side chain in regiospecific oxidation of heme by heme oxygenase [7]. J. Am. Chem. Soc. 122, 8311–8312

82. Wang, J., Lad, L., Poulos, T. L., and Ortiz De Montellano, P. R. (2005) Regiospecificity determinants of human heme oxygenase: Differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant. J. Biol. Chem. 280, 2797–2806

83. Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz De Montellano, P. R. (2006) Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network. Biochemistry. 45, 61–73

84. Bianchetti, C. M., Yi, L., Ragsdale, S. W., and Phillips, G. N. (2007) Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2. J. Biol. Chem. 282, 37624–37631

85. Lightning, L. K., Huang, H. W., Moënne-Loccoz, P., Loehr, T. M., Schuller, D. J., Poulos, T. L., and Ortiz De Montellano, P. R. (2001) Disruption of an Active Site Hydrogen Bond Converts Human Heme Oxygenase-1 into a Peroxidase. J. Biol. Chem. 276, 10612–10619

86. Schuller, D. J., Wilks, A., Ortiz De Montellano, P. R., and Poulos, T. L. (1999) Crystal structure of human heme oxygenase-1. Nat. Struct. Biol. 6, 860–867

87. Laskowski, R. A., and Swindells, M. B. (2011) LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786

88. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A. (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 98, 10037–10041

89. Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz De Montellano, P. R., and Poulos, T. L. (2003) Crystal structures of the ferric, ferrous, and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: Catalytic implications. J. Mol. Biol. 330, 527–538

90. Sugishima, M., Sakamoto, H., Kakuta, Y., Omata, Y., Hayashi, S., Noguchi, M., and Fukuyama, K. (2002) Crystal structure of rat apo-heme oxygenase-1 (HO-1): Mechanism of heme binding in HO-1 inferred from structural comparison of the apo and heme complex forms. Biochemistry. 41, 7293–7300

91. Micsonai, A., Wien, F., Kernya, L., Lee, Y. H., Goto, Y., Réfrégiers, M., and Kardos, J. (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 112, E3095– E3103

92. Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y. H., Goto, Y., Réfrégiers, M., and Kardos, J. (2018) BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46, W315–W322

93. Corrêa, D., and Ramos, C. (2009) The use of circular dichroism spectroscopy to study protein folding, form and function. African J Biochem Res. 3, 164–173

94. Wei, Y., Thyparambil, A. A., and Latour, R. A. (2014) Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochim. Biophys. Acta - Proteins Proteomics. 1844, 2331–2337

95. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., and Smith, H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 6, 343–345

96. Shinohara, F., Kurisu, G., Hanke, G., Bowsher, C., Hase, T., and Kimata-Ariga, Y. (2017) Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP+ oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation. Photosynth. Res. 134, 281–289

97. Hase, T., Mizutani, S., and Mukohata, Y. (1991) Expression of Maize Ferredoxin cDNA in Escherichia coli. Plant Physiol. 97, 1395–1401

98. Xu, X., Kim, S. K., Schürmann, P., Hirasawa, M., Tripathy, J. N., Smith, J., Knaff, D. B., and Ubbink, M. (2006) Ferredoxin/ferredoxin-thioredoxin reductase complex: Complete NMR mapping of the interaction site on ferredoxin by gallium substitution. FEBS Lett. 580, 6714–6720

99. Mutoh, R., Muraki, N., Shinmura, K., Kubota-Kawai, H., Lee, Y. H., Nowaczyk, M. M., Rögner, M., Hase, T., Ikegami, T., and Kurisu, G. (2015) X-ray Structure and Nuclear Magnetic Resonance Analysis of the Interaction Sites of the Ga- Substituted Cyanobacterial Ferredoxin. Biochemistry. 54, 6052–6061

100. Bax, A. (1994) Multidimensional nuclear magnetic resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738–744

101. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 6, 277–293

102. Lee, W., Tonelli, M., and Markley, J. L. (2015) NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 31, 1325–1327

103. Kobayashi, N., Harano, Y., Tochio, N., Nakatani, E., Kigawa, T., Yokoyama, S., Mading, S., Ulrich, E. L., Markley, J. L., Akutsu, H., and Fujiwara, T. (2012) An automated system designed for large scale NMR data deposition and annotation: Application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database. J. Biomol. NMR. 53, 311–320

104. Markova, N., Kataoka, Y., Lin, Y., Kurisu, G., Hase, T., and Lee, Y. H. (2017) Energetic basis on interactions between ferredoxin and ferredoxin NADP+ reductase at varying physiological conditions. Biochem. Biophys. Res. Commun. 482, 909–915

105. Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T., Teshima, K., Onda, Y., Kimata-Ariga, Y., and Hase, T. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat. Struct. Biol. 8, 117– 121

106. Sakakibara, Y., Kimura, H., Iwamura, A., Saitoh, T., Ikegami, T., Kurisu, G., and Hase, T. (2012) A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies. J. Biochem. 151, 483–492

107. Van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., Van Dijk, M., De Vries, S. J., and Bonvin, A. M. J. J. (2016) The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 428, 720–725

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る