リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension

Suzuki, Toshihiko 鈴木, 俊彦 名古屋大学

2020.08.19

概要

【緒言】
新生児慢性肺疾患(CLD)は、子宮内炎症、機械的外傷、酸素毒性などが要因となって生じる肺損傷であり、長期の呼吸障害や肺高血圧症(PH)、精神運動発達遅滞といった合併症を引き起こす。現在のところCLDに対する十分な治療法はなく、そのため新規治療法の開発は新生児医療における喫緊の課題である。近年、新規治療法として再生医療が注目されており、CLDに関しても間葉系幹細胞(MSC)を用いた臨床試験が進められている。しかし、MSCはCLDの病態に強く関わるマクロファージに対する作用が強いとは言えない。一方、7NDはCC chemokine ligand 2(CCL2)に対して阻害作用を持つヒトCCL2欠失変異体であり、マクロファージの遊走及び走化抑制効果を持つ。

本研究では、7NDを遺伝子導入したMSC(7ND-MSC)が、MSCによる治療効果に加え、7NDによるマクロファージ抑制効果を有するという仮説のもと、CLDモデルラットを用い、7ND-MSC及びMSCの治療効果について検討を行った。

【方法】
本動物実験は、名古屋大学の学内審査機関より承認を得た上で行った。

細胞調整:7ND-MSCは、ヒトCCL2欠失変異体(7ND)をレンチウイルスベクターに再クローニングした後、293T細胞にトランスフェクションしてベクターストックを作製し、ポリブレン(4μg/mL)下でラットMSCと共培養することで作製した。

モデル作製:CLDモデルは、Wistar/ST新生仔ラットを生直後から日齢15まで80%高酸素に暴露することで作製した。日齢5に、酢酸リンゲル液に懸濁した7ND-MSC(1×105個; 7ND群)、対照MSC(1×105個; MSC群)または酢酸リンゲル液のみ(Vehicle群)を右外頸静脈から投与した。なお、高酸素負荷を行わず、日齢5に酢酸リンゲル液のみを投与したラットをSham群とした。日齢15にラットを屠殺し、4群間で各種評価を行った。

血液・気管支肺胞洗浄液(BALF)評価:全身および気道の炎症を評価するために、屠殺時に血液、BALFを採取し、白血球数やその分画を測定した。血液は、動物用血球計数装置を用いて測定を行った。BALFは、Türk溶液で染色後、血球計算盤を用いて総細胞数を計測した。次いで塗抹標本を作製し、メイギムザ染色後に白血球分画を評価した。

肺組織評価:肺胞形成障害の評価として、肺組織切片を用いてヘマトキシリン・エオジン(H&E)染色を行い、肺組織体積密度(Tissue volume density; VDT)、肺胞表面積(Alveolar surface area; SA)を評価した。

肺内マクロファージ評価:肺組織におけるマクロファージを評価するために、Iba-1(汎マクロファージマーカー)、iNOS(M1マクロファージマーカー)、およびCD206(M2マクロファージマーカー)を用いた免疫組織化学染色を行った。

肺血管リモデリング評価:血管平滑筋のマーカーであるα-SMA抗体を用いた免疫組織化学染色を行い、肺血管内壁厚(MWT)を測定した。次に、血管平滑筋細胞の増殖を評価するために、α-SMA及び核増殖マーカーであるKi-67の二重染色を行い、Ki-67陽性血管の割合を評価した。

肺高血圧評価:肺高血圧の評価として、右心室と、左心室及び心室中隔との乾燥重量比(RV/LV+S)、および右心室収縮期圧(RVSP)を評価した。

サイトカイン・ケモカイン評価:肺組織におけるIL-6及びCCL2のmRNA発現量を、定量RT-PCRを用いて評価した。

【結果】
血液・BALF評価:血液中の総細胞数及びリンパ球数は、Vehicle群と比較して7ND群で有意に減少していた(p < 0.01)。また、BALF中の総細胞数及びマクロファージ数は、 Vehicle群、MSC群と比較して、7ND群で有意な減少を認めた(共にp < 0.01)。(図1)

肺組織評価:VDT、SAに関して、Vehicle群と比較して7ND群では著明な改善がみられた(共にp < 0.01)が、MSC群では有意な改善効果は認めなかった。(図2)

肺内マクロファージ評価:Iba-1陽性細胞、Iba-1/iNOS二重陽性細胞の総数は、Vehicle群及びMSC群と比較して、7ND群では有意に減少していた(共にp < 0.01)。対照的に、 Iba-1/CD206二重陽性細胞の数は、Vehicle群及びMSC群と比較して、7ND群で有意に増加していた(共にp < 0.01)。(図3)

肺血管リモデリング評価:Vehicle群では、Sham群と比べ末梢肺動脈でのα-SMA発現が強く、MWTは有意に高かった。一方、7ND群のMWTは、Vehicle群及びMSC群と比較して有意に低下していた。さらに、Ki-67陽性血管の割合は、Sham群と比較してVehicle群で有意に増加していたが、7ND群では減少していた(p < 0.01)。(図4)

肺高血圧評価:Vehicle群、MSC群と比べ、7ND群ではRV/LV+Sが著明に減少しており、右心室肥大の改善が示唆された(共にp < 0.01)。さらに、7ND群のRVSPは、Vehicle群及びMSC群と比較して有意な低下を認めた。(図5)

サイトカイン・ケモカイン評価: 肺組織におけるIL-6及びCCL2のmRNA発現量は、 Vehicle群と比較して7ND群で有意に低下していた(p < 0.01)。一方、MSC群でもmRNA発現量は低下傾向を認めたが、有意な差はなかった。(図6)

【考察】
CLDは、炎症、気管支平滑筋肥厚、間質性浮腫などによる肺胞形成障害を特徴とする肺損傷である。そのため、肺組織では肺胞中隔の大小不同や肥厚が生じ、VDT、SAの低下が認められる。本研究では、Vehicle群と比較して、7ND-MSC投与後にVDT及び SAの有意な改善を認めたが、MSC投与による改善効果は乏しかった。このことは、 7ND-MSCがMSCよりも肺胞形成障害を改善させたことを示している。

さらに本研究では、PHに対する7ND-MSCの高い治療効果も示された。CLDにおける PHは、炎症および異常血管新生、血管リモデリングにより、肺細動脈の筋性化や血管平滑筋細胞の増殖、さらには右室肥大やRVSPの上昇を引き起こす。しかし、7ND-MSCは、右室肥大の改善やRVSPの低下をもたらし、肺血管壁肥厚の改善や血管平滑筋細胞の増殖血管減少など、血管リモデリングに対する高い抑制効果を示した。

7ND-MSCが、MSCと比較して高い治療効果を有する機序として、7NDによる肺内炎症の軽減/抑制が推察された。7ND-MSCは、単球/マクロファージの遊走及び走化を調節するCCL2に対し、阻害作用を持つヒトCCL2欠失変異体、7NDを分泌する。従って、 MSCと比較して7ND-MSCには、特にマクロファージを抑制する強力な効果があると考えられた。肺組織内において、マクロファージは炎症性(M1)マクロファージと抗炎症(M2)マクロファージに分類され、特にM1マクロファージは急性肺損傷に重要な役割を果たす。本研究では、7ND-MSC投与によりBALF中のマクロファージ数が有意に減少し、しかも肺組織において、主にM1マクロファージが減少しM2マクロファージが増加していた。本結果から、7ND-MSCが肺組織内の炎症を引き起こすM1マクロファージを抑制し、さらにM1からM2へマクロファージの極性を変化させることで、炎症を抑制している可能性が示唆された。

また、7ND群では血液中の炎症細胞、特にリンパ球数が、Vehicle群及びMSC群よりも減少していた。このことは、7ND-MSCがマクロファージ以外の免疫細胞にも何らかの影響を与え、全身性の非特異的炎症を改善させる可能性が考えられた。さらに、肺組織におけるIL-6及びCCL2のmRNA発現量は、MSCと比較して7ND-MSC投与により、強く抑制されていた。CCL2を抑制することで、IL-6などの炎症性サイトカインが抑制されることが報告されており、本結果は、CCL2を抑制する7NDによって、7ND-MSCの炎症軽減効果がMSC単独と比べさらに強化されるという機序を補完すると考えられた。

【結語】
新生仔CLDモデルラットにおいて、7ND-MSCの静脈内投与は、MSCと比較して肺胞形成障害やPHに対して強い改善効果を認めた。その機序として、7ND-MSCがMSC単独と比べて、肺組織におけるIL-6及びCCL2のmRNA発現量を抑制し、マクロファージの極性を変化させていることから、7NDによる炎症抑制作用の増強が考えられた。

この論文で使われている画像

参考文献

[1] Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med 2017;132:170–7.

[2] Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163(7):1723–9.

[3] Davidson LM, Berkelhamer SK. Bronchopulmonary Dysplasia: Chronic Lung Dis- ease of Infancy and Long-Term Pulmonary Outcomes. J Clin Med 2017;6(1):4.

[4] Pakvasa MA, Saroha V, Patel RM. Optimizing Caffeine Use and Risk of Bronchopul- monary Dysplasia in Preterm Infants: A Systematic Review, Meta-analysis, and Application of Grading of Recommendations Assessment, Development, and Eval- uation Methodology. Clin Perinatol 2018;45(2):273–91.

[5] Dumpa V, Bhandari V. Surfactant, steroids and non-invasive ventilation in the prevention of BPD. Semin Perinatol 2018;42(7):444–52.

[6] Iyengar A, Davis JM. Drug therapy for the prevention and treatment of broncho- pulmonary dysplasia. Front Pharmacol 2015;6:12.

[7] van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, Maas M, Heijnen CJ, Ferriero DM. Mesenchymal stem cell transplantation attenu- ates brain injury after neonatal stroke. Stroke 2013;44(5):1426–32.

[8] de Witte SFH, Merino AM, Franquesa M, Strini T, van Zoggel JAA, Korevaar SS, Luk F, Gargesha M, O’Flynn L, Roy D, Elliman SJ, Newsome PN, Baan CC, Hoogduijn MJ. Cytokine treatment optimises the immunotherapeutic effects of umbilical cord- derived MSC for treatment of inflammatory liver disease. Stem Cell Res Ther 2017;8(1):140.

[9] Liu Y, Hu J, Wang S. Mesenchymal stem cell-mediated treatment of oral diseases. Histol Histopathol 2014;29(8):1007–15.

[10] Sugiyama Y, Sato Y, Kitase Y, Suzuki T, Kondo T, Mikrogeorgiou A, Horinouchi A, Maruyama S, Shimoyama Y, Tsuji M, Suzuki S, Yamamoto T, Hayakawa M. Intra- venous Administration of Bone Marrow-Derived Mesenchymal Stem Cell, but not Adipose Tissue-Derived Stem Cell, Ameliorated the Neonatal Hypoxic-Ischemic Brain Injury by Changing Cerebral Inflammatory State in Rat. Front Neurol 2018;9 (757):757.

[11] Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019;316(1):L6–L19.

[12] Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, Eldridge MW. Intraperitoneal injection of MSC-derived exosomes prevent experi- mental bronchopulmonary dysplasia. Biochem Biophys Res Commun 2018;503 (4):2653–8.

[13] Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fre- denburgh LE, Alex Mitsialis S, Kourembanas S, Kim CF. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012;302(9): L829–37.

[14] Pierro M, Ciarmoli E, Thebaud B. Bronchopulmonary Dysplasia and Chronic Lung Disease: Stem Cell Therapy. Clin Perinatol 2015;42(4):889–910.

[15] Augustine S, Avey MT, Harrison B, Locke T, Ghannad M, Moher D, Thebaud B. Mes- enchymal Stromal Cell Therapy in Bronchopulmonary Dysplasia: Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cells Transl Med 2017;6 (12):2079–93.

[16] Shahzad T, Radajewski S, Chao C-M, Bellusci S, Ehrhardt H. Pathogenesis of bron- chopulmonary dysplasia: when inflammation meets organ development. Molecu- lar and Cellular Pediatrics 2016;3(1):23.

[17] Duffy MM, Ritter T, Ceredig R, Griffin MD. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2011;2(4):34.

[18] Zeng SL, Wang LH, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate exper- imental asthma by altering dendritic cell function. Mol Med Rep 2015;12 (2):2511–20.

[19] Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolica- nin Z, Djonov V, Lukic ML, Volarevic V. Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transpl 2017;23(8):1040–50.

[20] Carty F, Mahon BP, English K. The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents? Clin Exp Immunol 2017;188 (1):1–11.

[21] Zhang YJ, Rollins BJ. A Dominant-Negative Inhibitor Indicates That Monocyte Che- moattractant Protein-1 Functions as a Dimer. Mol Cell Biol 1995;15(9):4851–5.

[22] Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S, Sato W, Morita Y, Maruyama H, Egashira K, Matsuo S. Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 2003;14(6):1496–505.

[23] Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant pro- tein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009;29(6):313–26.

[24] Zaloudikova M, Vytasek R, Vajnerova O, Hnilickova O, Vizek M, Hampl V, Herget J. Depletion of Alveolar Macrophages Attenuates Hypoxic Pulmonary Hypertension but not Hypoxia-Induced Increase in Serum Concentration of MCP-1. Physiol Res 2016;65(5):763–8.

[25] Kimura H, Okada O, Tanabe N, Tanaka Y, Terai M, Takiguchi Y, Masuda M, Naka- jima N, Hiroshima K, Inadera H, Matsushima K, Kuriyama T. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic throm- boembolic pulmonary hypertension. Am J Resp Crit Care 2001;164(2):319–24.

[26] Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 2009;104(2):236–44. 28p following 244.

[27] Saka Y, Furuhashi K, Katsuno T, Kim H, Ozaki T, Iwasaki K, Haneda M, Sato W, Tsu- boi N, Ito Y, Matsuo S, Kobayashi T, Maruyama S. Adipose-derived stromal cells cultured in a low-serum medium, but not bone marrow-derived stromal cells, impede xenoantibody production. Xenotransplantation 2011;18(3):196–208.

[28] Saito S, Nakayama T, Hashimoto N, Miyata Y, Egashira K, Nakao N, Nishiwaki S, Hasegawa M, Hasegawa Y, Naoe T. Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am J Pathol 2011;179(3):1088–94.

[29] Snyder JM, Jenkins-Moore M, Jackson SK, Goss KL, Dai HH, Bangsund PJ, Giguere V, McGowan SE. Alveolarization in retinoic acid receptor-beta-deficient mice. Pediatr Res 2005;57(3):384–91.

[30] Hsia CC, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantita- tive assessment of lung structure. Am J Respir Crit Care Med 2010;181(4):394– 418.

[31] Choi CW, Kim BI, Hong JS, Kim EK, Kim HS, Choi JH. Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 2009;65(3):323–7.

[32] Basu RK, Donaworth E, Wheeler DS, Devarajan P, Wong HR. Antecedent acute kid- ney injury worsens subsequent endotoxin-induced lung inflammation in a two- hit mouse model. Am J Physiol Renal Physiol 2011;301(3):F597–604.

[33] Zhang C, Lei GS, Shao S, Jung HW, Durant PJ, Lee CH. Accumulation of myeloid- derived suppressor cells in the lungs during Pneumocystis pneumonia. Infect Immun 2012;80(10):3634–41.

[34] Ito T, Okada T, Miyashita H, Nomoto T, Nonaka-Sarukawa M, Uchibori R, Maeda Y, Urabe M, Mizukami H, Kume A, Takahashi M, Ikeda U, Shimada K, Ozawa K. Inter- leukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats. Circ Res 2007;101(7):734–41.

[35] Wagenaar GT, Laghmani el H, Fidder M, Sengers RM, de Visser YP, de Vries L, Rink R, Roks AJ, Folkerts G, Walther FJ. Agonists of MAS oncogene and angiotensin II type 2 receptors attenuate cardiopulmonary disease in rats with neonatal hyperoxia- induced lung injury. Am J Physiol Lung Cell Mol Physiol 2013;305(5):L341–51.

[36] Rong M, Chen S, Zambrano R, Duncan MR, Grotendorst G, Wu S. Inhibition of beta-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung. Pediatr Res 2016;80(1):136–44.

[37] Young KC, Torres E, Hehre D, Wu S, Suguihara C, Hare JM. Antagonism of stem cell factor/c-kit signaling attenuates neonatal chronic hypoxia-induced pulmonary vascular remodeling. Pediatr Res 2016;79(4):637–46.

[38] Pansani MC, Azevedo PS, Rafacho BP, Minicucci MF, Chiuso-Minicucci F, Zorzella- Pezavento SG, Marchini JS, Padovan GJ, Fernandes AA, Matsubara BB, Matsubara LS, Zornoff LA, Paiva SA. Atrophic cardiac remodeling induced by taurine defi- ciency in Wistar rats. PLoS One 2012;7(7):e41439.

[39] Kishimoto Y, Kato T, Ito M, Azuma Y, Fukasawa Y, Ohno K, Kojima S. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxi- dant effects. J Thorac Cardiovasc Surg 2015;150(3):645–54. e3.

[40] Meghwani H, Prabhakar P, Mohammed SA, Seth S, Hote MP, Banerjee SK, Arava S, Ray R, Maulik SK. Beneficial effects of aqueous extract of stem bark of Terminalia arjuna (Roxb.), An ayurvedic drug in experimental pulmonary hypertension. J Ethnopharmacol 2017;197:184–94.

[41] Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 1998;29(7):710–7.

[42] Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol 2003;8(1):73–81.

[43] Randell SH, Mercer RR, Young SL. Neonatal hyperoxia alters the pulmonary alveo- lar and capillary structure of 40-day-old rats. Am J Pathol 1990;136(6):1259–66.

[44] Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014;306(8):L709–25.

[45] Lu HL, Huang XY, Luo YF, Tan WP, Chen PF, Guo YB. Activation of M1 macrophages plays a critical role in the initiation of acute lung injury. Biosci Rep 2018;38(2).

[46] Schyns J, Bureau F, Marichal T. Lung Interstitial Macrophages: Past, Present, and Future. J Immunol Res 2018(2018):5160794.

[47] Kohler C. Allograft inflammatory factor-1/Ionized calcium-binding adapter mole- cule 1 is specifically expressed by most subpopulations of macrophages and sper- matids in testis. Cell Tissue Res 2007;330(2):291–302.

[48] Yamauchi K, Kasuya Y, Kuroda F, Tanaka K, Tsuyusaki J, Ishizaki S, Matsunaga H, Iwamura C, Nakayama T, Tatsumi K. Attenuation of lung inflammation and fibro- sis in CD69-deficient mice after intratracheal bleomycin. Respir Res 2011;12:131.

[49] Donovan KM, Leidinger MR, McQuillen LP, Goeken JA, Hogan CM, Harwani SC, Flaherty HA, Meyerholz DK. Allograft Inflammatory Factor 1 as an Immunohisto- chemical Marker for Macrophages in Multiple Tissues and Laboratory Animal Species. Comp Med 2018;68(5):341–8.

[50] Berkelhamer SK, Mestan KK, Steinhorn RH. Pulmonary hypertension in broncho- pulmonary dysplasia. Semin Perinatol 2013;37(2):124–31.

[51] Al-Ghanem G, Shah P, Thomas S, Banfield L, El Helou S, Fusch C, Mukerji A. Bron- chopulmonary dysplasia and pulmonary hypertension: a meta-analysis. J Perina- tol 2017;37(4):414–9.

[52] Altit G, Dancea A, Renaud C, Perreault T, Lands LC, Sant'Anna G. Pathophysiology, screening and diagnosis of pulmonary hypertension in infants with bronchopulmo- nary dysplasia - A review of the literature. Paediatr Respir Rev 2017;23:16–26.

[53] Bui CB, Pang MA, Sehgal A, Theda C, Lao JC, Berger PJ, Nold MF, Nold-Petry CA. Pul- monary hypertension associated with bronchopulmonary dysplasia in preterm infants. J Reprod Immunol 2017;124:21–9.

[54] Stocker JT. Pathologic features of long-standing ''healed'' bronchopulmonary dys- plasia: a study of 28 3- to 40-month-old infants. Hum Pathol 1986;17(9):943–61.

[55] Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2012;2(2):170–81.

[56] Heilman RP, Lagoski MB, Lee KJ, Taylor JM, Kim GA, Berkelhamer SK, Steinhorn RH, Farrow KN. Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice. Am J Physiol Heart Circ Physiol 2015;308(12):H1575–82.

[57] de Visser YP, Walther FJ, Laghmani el H, Boersma H, van der Laarse A, Wagenaar GT. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortal- ity and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res 2009;10:30.

[58] Parker TA, Abman SH. The pulmonary circulation in bronchopulmonary dysplasia. Semin Neonatol 2003;8(1):51–61.

[59] Baker CD, Abman SH, Mourani PM. Pulmonary Hypertension in Preterm Infants with Bronchopulmonary Dysplasia. Pediatr Allergy Immunol Pulmonol 2014;27(1):8–16.

[60] Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kour- embanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 2009;180 (11):1122–30.

[61] Egashira K, Koyanagi M, Kitamoto S, Ni WH, Kataoka C, Morishita R, Kaneda Y, Akiyama C, Nishida KI, Sueishi K, Takeshita A. Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodel- ing induced by chronic blockade of NO synthesis. FASEB J 2000;14(13):1974–8.

[62] Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida KI, Takeshita A, Egashira K, Sueishi K. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol-Heart C 2002;283(5): H2021–8.

[63] Thompson A, Bhandari V. Pulmonary Biomarkers of Bronchopulmonary Dysplasia. Biomark Insights 2008;3:361–73.

[64] Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, Kang S, Jin HJ, Yang YS, Park WS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuate Hyper- oxia-Induced Lung Injury in Neonatal Rats. Cell Transplant 2009;18(8):869–86.

[65] Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kun- kel SL, Walz A, Hudson LD, Martin TR. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Resp Crit Care 1996;154(3):602–11.

[66] Sutsko RP, Young KC, Ribeiro A, Torres E, Rodriguez M, Hehre D, Devia C, McNiece I, Suguihara C. Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatr Res 2013;73 (1):46–53.

[67] van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey- Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M, Hashimoto K, Abley D, Korbutt G, Archer SL, Thebaud B. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 2009;180(11):1131–42.

[68] Fung ME, Thebaud B. Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatr Res 2014;75(1-1):2–7.

[69] de Paula S, Greggio S, Marinowic DR, Machado DC, DaCosta JC. The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia. Neu- roscience 2012;210:431–41.

[70] Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yere- bakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 2009;77(3):370–6.

[71] Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, Oh WI, Park WS. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One 2013;8(1): e52419.

[72] Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomy- cin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003;100 (14):8407–11.

[73] Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 2014;164(5):966–72. e6.

[74] Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Trans- plantation for Bronchopulmonary Dysplasia. J Pediatr 2017;185:49–54. e2.

[75] Kumai Y, Ooboshi H, Takada J, Kamouchi M, Kitazono T, Egashira T, Ibayashi S, Iida M. Anti-monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab 2004;24 (12):1359–68.

[76] Yao Z, Keeney M, Lin TH, Pajarinen J, Barcay K, Waters H, Egashira K, Yang F, Goodman S. Mutant monocyte chemoattractant protein 1 protein attenuates migration of and inflammatory cytokine release by macrophages exposed to orthopedic implant wear particles. J Biomed Mater Res A 2014;102(9):3291–7.

[77] Koga M, Kai H, Egami K, Murohara T, Ikeda A, Yasuoka S, Egashira K, Matsuishi T, Kai M, Kataoka Y, Kuwano M, Imaizumi T. Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochem Bioph Res Co 2008;365(2):279–84.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る