リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Action-rule-based cognitive control enables efficient execution of stimulus–response conflict tasks: a model validation of Simon task performance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Action-rule-based cognitive control enables efficient execution of stimulus–response conflict tasks: a model validation of Simon task performance

Otani, Yoshitaka Katagiri, Yoshitada Imai, Emiko Kowa, Hisatomo 神戸大学

2023.11.16

概要

Introduction: The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods: A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled “L” or “R,” where “L” requests left and “R” requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results: Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion: Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.

この論文で使われている画像

参考文献

Aben, B., Buc Calderon, C. B., Van den Bussche, E., and Verguts, T. (2020). Cognitive

effort modulates connectivity between dorsal anterior cingulate cortex and task-relevant

cortical areas. J. Neurosci. 40, 3838–3848. doi: 10.1523/JNEUROSCI.2948-19.2020

D’Angelo, M. C., Milliken, B., Jiménez, L., and Lupiáñez, J. (2013). Implementing

flexibility in automaticity: evidence from context-specific implicit sequence learning.

Conscious. Cogn. 22, 64–81. doi: 10.1016/j.concog.2012.11.002

Anderson, B. A. (2018). Controlled information processing, automaticity, and the

burden of proof. Psychon. Bull. Rev. 25, 1814–1823. doi: 10.3758/s13423-017-1412-7

Danner, S. M., Hofstoetter, U. S., Freundl, B., Binder, H., Mayr, W., Rattay, F., et al.

(2015). Human spinal locomotor control is based on flexibly organized burst generators.

Brain 138, 577–588. doi: 10.1093/brain/awu372

Araki, A., Imai, E., and Katagiri, Y. (2018). Role of the dorsal anterior cingulate cortex

in relational memory formation: a deep brain activity index study. J. Behav. Brain Sci. 8,

269–293. doi: 10.4236/jbbs.2018.85017

Demeyere, N., and Gillebert, C. R. (2019). Ego- and allocentric visuospatial neglect:

dissociations, prevalence, and laterality in acute stroke. Neuropsychology 33, 490–498.

doi: 10.1037/neu0000527

Asemi, A., Ramaseshan, K., Burgess, A., Diwadkar, V. A., and Bressler, S. L. (2015).

Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated

unimanual motor behavior. Front. Hum. Neurosci. 9:309. doi: 10.3389/fnhum.2015.00309

Díaz-García, J., González-Ponce, I., Ponce-Bordón, J. C., López-Gajardo, M. Á.,

Ramírez-Bravo, I., Rubio-Morales, A., et al. (2021). Mental load and fatigue assessment

instruments: a systematic review. Int. J. Environ. Res. Public Health 19:419. doi: 10.3390/

ijerph19010419

Ashby, F. G., and Spiering, B. J. (2004). The neurobiology of category learning. Behav.

Cogn. Neurosci. Rev. 3, 101–113. doi: 10.1177/1534582304270782

Diwadkar, V. A., Asemi, A., Burgess, A., Chowdury, A., and Bressler, S. L. (2017).

Potentiation of motor sub-networks for motor control but not working memory:

interaction of dACC and SMA revealed by resting-state directed functional connectivity.

PLoS One 12:e0172531. doi: 10.1371/journal.pone.0172531

Ballesta, S., and Padoa-Schioppa, C. (2019). Economic decisions through circuit

inhibition. Curr. Biol. 29, 3814–3824.e5. doi: 10.1016/j.cub.2019.09.027

Bardi, L., Schiff, S., Basso, D., and Mapelli, D. (2015). A transcranial magnetic

stimulation study on response activation and selection in spatial conflict. Eur. J. Neurosci.

41, 487–491. doi: 10.1111/ejn.12803

Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., and Notebaert, W. (2014).

The congruency sequence effect 3.0: a critical test of conflict adaptation. PLoS One

9:e110462. doi: 10.1371/journal.pone.0110462

Bejjani, C., and Egner, T. (2019). Spontaneous task structure formation results in a

cost to incidental memory of task stimuli. Front. Psychol. 10:2833. doi: 10.3389/

fpsyg.2019.02833

Ebitz, R. B., and Hayden, B. Y. (2016). Dorsal anterior cingulate: a Rorschach test for

cognitive neuroscience. Nat. Neurosci. 19, 1278–1279. doi: 10.1038/nn.4387

Benoit, C. E., Solopchuk, O., Borragán, G., Carbonnelle, A., Van Durme, S., and

Zénon, A. (2019). Cognitive task avoidance correlates with fatigue-induced performance

decrement but not with subjective fatigue. Neuropsychologia 123, 30–40. doi: 10.1016/j.

neuropsychologia.2018.06.017

Evans, K. L., and Hampson, E. (2015). Sex differences on prefrontally-dependent

cognitive tasks. Brain Cogn. 93, 42–53. doi: 10.1016/j.bandc.2014.11.006

Fabio, R. A., Caprì, T., and Romano, M. (2019). From controlled to automatic

processes and back again: the role of contextual features. Eur. J. Psychol. 15, 773–788.

doi: 10.5964/ejop.v15i4.1746

Bressler, S. L., and Menon, V. (2010). Large-scale brain networks in cognition:

emerging methods and principles. Trends Cogn. Sci. 14, 277–290. doi: 10.1016/j.

tics.2010.04.004

Filimon, F. (2015). Are all spatial reference frames egocentric? Reinterpreting evidence

for allocentric, object-centered, or world-centered reference frames. Front. Hum.

Neurosci. 9:648. doi: 10.3389/fnhum.2015.00648

Cao, D., Li, Y., and Niznikiewicz, M. A. (2020). Neural characteristics of cognitive

reappraisal success and failure: an ERP study. Brain Behav. 10:e01584. doi: 10.1002/

brb3.1584

Frank, D. W., Costa, V. D., Averbeck, B. B., and Sabatinelli, D. (2019). Directional

interconnectivity of the human amygdala, fusiform gyrus, and orbitofrontal cortex in

emotional scene perception. J. Neurophysiol. 122, 1530–1537. doi: 10.1152/jn.00780.2018

Carlos, B. J., Hirshorn, E. A., Durisko, C., Fiez, J. A., and Coutanche, M. N. (2019).

Word inversion sensitivity as a marker of visual word form area lateralization: an

application of a novel multivariate measure of laterality. NeuroImage 191, 493–502. doi:

10.1016/j.neuroimage.2019.02.044

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.

Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Chen, J., Li, C., He, C., and Chen, A. (2009). The conflict adaptation is affected by

attentional strategies: evidence from the arrow flanker task. Sci China C Life Sci 52,

990–994. doi: 10.1007/s11427-009-0123-3

Friston, K. J., Parr, T., and de Vries, B. (2017). The graphical brain: belief propagation

and active inference. Netw. Neurosci. 1, 381–414. doi: 10.1162/NETN_a_00018

Gazit, E., Buchman, A. S., Dawe, R., Curran, T. A., Mirelman, A., Giladi, N., et al.

(2020). What happens before the first step? A new approach to quantifying gait initiation

using a wearable sensor. Gait Posture 76, 128–135. doi: 10.1016/j.gaitpost.2019.11.007

Clawson, A., Clayson, P. E., and Larson, M. J. (2013). Cognitive control adjustments

and conflict adaptation in major depressive disorder. Psychophysiology 50, 711–721. doi:

10.1111/psyp.12066

Gigerenzer, G., and Gaissmaier, W. (2011). Heuristic decision making. Annu. Rev.

Psychol. 62, 451–482. doi: 10.1146/annurev-psych-120709-145346

Clayson, P. E., and Larson, M. J. (2011). Conflict adaptation and sequential trial effects:

support for the conflict monitoring theory. Neuropsychologia 49, 1953–1961. doi:

10.1016/j.neuropsychologia.2011.03.023

Goldman, R. I., Stern, J. M., Engel, J. Jr., and Cohen, M. S. (2002). Simultaneous EEG

and fMRI of the alpha rhythm. Neuroreport 13:2487. doi: 10.1097/01.

wnr.0000047685.08940.d0

Colas, J. T., Dundon, N. M., Gerraty, R. T., Saragosa-Harris, N. M., Szymula, K. P.,

Tanwisuth, K., et al. (2022). Reinforcement learning with associative or discriminative

generalization across states and actions: fMRI at 3 T and 7 T. Hum. Brain Mapp. 43,

4750–4790. doi: 10.1002/hbm.25988

Gratton, G., Coles, M. G., and Donchin, E. (1992). Optimizing the use of information:

strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506. doi:

10.1037//0096-3445.121.4.480

Conen, K. E., and Padoa-Schioppa, C. (2015). Neuronal variability in orbitofrontal

cortex during economic decisions. J. Neurophysiol. 114, 1367–1381. doi: 10.1152/

jn.00231.2015

Frontiers in Human Neuroscience

Grossi, G., and Coch, D. (2005). Automatic word form processing in masked priming:

an ERP study. Psychophysiology 42, 343–355. doi: 10.1111/j.1469-8986.2005.00286.x

17

frontiersin.org

Otani et al.

10.3389/fnhum.2023.1239207

Hallett, M., DelRosso, L. M., Elble, R., Ferri, R., Horak, F. B., Lehericy, S., et al. (2021).

Evaluation of movement and brain activity. Clin. Neurophysiol. 132, 2608–2638. doi:

10.1016/j.clinph.2021.04.023

Kornblum, S. (1994). The way irrelevant dimensions are processed depends on what

they overlap with: the case of Stroop- and Simon-like stimuli. Psychol. Res. 56, 130–135.

doi: 10.1007/bf00419699

He, J., Zheng, Y., Fan, L., Pan, T., and Nie, Y. (2019). Automatic processing advantage

of cartoon face in internet gaming disorder: evidence from P100, N170, P200, and

MMN. Front. Psych. 10:824. doi: 10.3389/fpsyt.2019.00824

Korn, C. W., and Bach, D. R. (2018). Heuristic and optimal policy computations in the

human brain during sequential decision-making. Nat. Commun. 9:325. doi: 10.1038/

s41467-017-02750-3

Heilbronner, S. R., and Hayden, B. Y. (2016). Dorsal anterior cingulate cortex: a

bottom-up view. Annu. Rev. Neurosci. 39, 149–170. doi: 10.1146/annurevneuro-070815-013952

Lanius, R. A., Frewen, P. A., Tursich, M., Jetly, R., and McKinnon, M. C. (2015).

Restoring large-scale brain networks in PTSD and related disorders: a proposal for

neuroscientifically-informed treatment interventions. Eur. J. Psychotraumatol. 6:27313.

doi: 10.3402/ejpt.v6.27313

Herz, D. M., Tan, H., Brittain, J. S., Fischer, P., Cheeran, B., Green, A. L., et al. (2017).

Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic

networks. Elife 6:e21481. doi: 10.7554/eLife.21481

Larionova, E. V., and Martynova, O. V. (2022). Frequency effects on spelling error

recognition: an ERP study. Front. Psychol. 13:834852. doi: 10.3389/fpsyg.2022.834852

Hildesheim, F. E., Debus, I., Kessler, R., Thome, I., Zimmermann, K. M.,

Steinsträter, O., et al. (2020). The trajectory of hemispheric lateralization in the core

system of face processing: a cross-sectional functional magnetic resonance imaging pilot

study. Front. Psychol. 11:507199. doi: 10.3389/fpsyg.2020.507199

Larson, C. L., Davidson, R. J., Abercrombie, H. C., Ward, R. T., Schaefer, S. M.,

Jackson, D. C., et al. (1998). Relations between PET-derived measures of thalamic

glucose metabolism and EEG alpha power. Psychophysiology 35, 162–169.

Larson, M. J., Farrer, T. J., and Clayson, P. E. (2011). Cognitive control in mild

traumatic brain injury: conflict monitoring and conflict adaptation. Int. J. Psychophysiol.

82, 69–78. doi: 10.1016/j.ijpsycho.2011.02.018

Hoffman, H. G., Boe, D. A., Rombokas, E., Khadra, C., LeMay, S., Meyer, W. J., et al.

(2020). Virtual reality hand therapy: a new tool for nonopioid analgesia for acute

procedural pain, hand rehabilitation, and VR embodiment therapy for phantom limb

pain. J. Hand Ther. 33, 254–262. doi: 10.1016/j.jht.2020.04.001

Larson, M. J., South, M., Clayson, P. E., and Clawson, A. (2012). Cognitive control and

conflict adaptation in youth with high-functioning autism. J. Child Psychol. Psychiatry

53, 440–448. doi: 10.1111/j.1469-7610.2011.02498.x

Hommel, B. (2019). Theory of event coding (TEC) V2.0: representing and controlling

perception and action. Atten. Percept. Psychophys. V2.0. 81, 2139–2154. doi: 10.3758/

s13414-019-01779-4

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., and Crotty, M. (2017).

Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 11:CD008349. doi:

10.1002/14651858.CD008349.pub4

Hommel, B., Müsseler, J., Aschersleben, G., and Prinz, W. (2001). The theory of event

coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24,

849–878. doi: 10.1017/s0140525x01000103

Leeb, R., and Pérez-Marcos, D. (2020). Brain-computer interfaces and virtual reality

for neurorehabilitation. Handb. Clin. Neurol. 168, 183–197. doi: 10.1016/

B978-0-444-63934-9.00014-7

Hommel, B., Proctor, R. W., and Vu, K. P. L. (2004). A feature-integration account of

sequential effects in the Simon task. Psychol. Res. 68, 1–17. doi: 10.1007/

s00426-003-0132-y

Leota, J., Kleinert, T., Tran, A., and Nash, K. (2021). Neural signatures of heterogeneity

in risk-taking and strategic consistency. Eur. J. Neurosci. 54, 7214–7230. doi: 10.1111/

ejn.15476

Hornsby, B. W. Y. (2013). The effects of hearing aid use on listening effort and mental

fatigue associated with sustained speech processing demands. Ear Hear. 34, 523–534.

doi: 10.1097/aud.0b013e31828003d8

Lerner, A., Bagic, A., Hanakawa, T., Boudreau, E. A., Pagan, F., Mari, Z., et al. (2009).

Involvement of insula and cingulate cortices in control and suppression of natural urges.

Cereb. Cortex 19, 218–223. doi: 10.1093/cercor/bhn074

Hsu, C.-H., Wu, Y.-N., and Lee, C. Y. (2021). Effects of phonological consistency and

semantic radical combinability on N170 and P200 in the reading of Chinese

phonograms. Front. Psychol. 12:603878. doi: 10.3389/fpsyg.2021.603878

Leuthold, H. (2011). The Simon effect in cognitive electrophysiology: a short review.

Acta Psychol. 136, 203–211. doi: 10.1016/j.actpsy.2010.08.001

Huber-Huber, C., and Ansorge, U. (2018). Unconscious conflict adaptation without

feature-repetitions and response time carry-over. J. Exp. Psychol. Hum. Percept. Perform.

44, 169–175. doi: 10.1037/xhp0000450

Lindgren, K. A., Larson, C. L., Schaefer, S. M., Abercrombie, H. C., Ward, R. T.,

Oakes, T. R., et al. (1999). Thalamic metabolic rate predicts EEG alpha power in healthy

control subjects but not in depressed patients. Biol. Psychiatry 45, 943–952. doi: 10.1016/

s0006-3223(98)00350-3

Hübner, R., and Mishra, S. (2013). Evidence for strategic suppression of irrelevant

activation in the Simon task. Acta Psychol. 144, 166–172. doi: 10.1016/j.

actpsy.2013.05.012

Lu, C. H., and Proctor, R. W. (1995). The influence of irrelevant location information

on performance: a review of the Simon and spatial Stroop effects. Psychon. Bull. Rev. 2,

174–207. doi: 10.3758/BF03210959

Imai, E., and Katagiri, Y. (2018). Cognitive control and brain network dynamics

during word generation tasks predicted using a novel event-related deep brain activity

method. J. Behav. Brain Sci. 8, 93–115. doi: 10.4236/jbbs.2018.82006

Luo, C., and Proctor, R. W. (2019). How different direct association routes influence

the indirect route in the same Simon-like task. Psychol. Res. 83, 1733–1748. doi: 10.1007/

s00426-018-1024-5

Imbir, K. K., Duda-Goławska, J., Jurkiewicz, G., Pastwa, M., Sobieszek, A.,

Wielgopolan, A., et al. (2022). The affect misattribution in the interpretation of

ambiguous stimuli in terms of warmth vs. competence: Behavioral phenomenon and its

neural correlates. Brain Sci. 12:1093. doi: 10.3390/brainsci12081093

Ma, Y., and Han, S. (2012). Functional dissociation of the left and right fusiform gyrus

in self-face recognition. Hum. Brain Mapp. 33, 2255–2267. doi: 10.1002/hbm.21356

MacKinnon, C. D., Bissig, D., Chiusano, J., Miller, E., Rudnick, L., Jager, C., et al.

(2007). Preparation of anticipatory postural adjustments prior to stepping. J.

Neurophysiol. 7, 4368–4379. doi: 10.1152/jn.01136.2006

Ivanoff, J. (2003). On spatial response code activation in a Simon task. Acta Psychol.

112, 157–179. doi: 10.1016/s0001-6918(02)00081-1

Iyengar, S. S., and Lepper, M. R. (2000). When choice is demotivating: Can one desire

too much of a good thing? J. Pers. Soc. Psychol. 79, 995–1006. doi:

10.1037//0022-3514.79.6.995

Marcora, S. M., Staiano, W., and Manning, V. (2009). Mental fatigue impairs physical

performance in humans. J. Appl. Physiol 106, 857–864. doi: 10.1152/

japplphysiol.91324.2008

Joos, E., Giersch, A., Bhatia, K., Heinrich, S. P., Tebartz van Elst, L., and Kornmeier, J.

(2020). Using the perceptual past to predict the perceptual future influences the

perceived present -a novel ERP paradigm. PLoS One 5:e0237663. doi: 10.1371/journal.

pone.0237663

Marshall, J. A., Dornhaus, A., Franks, N. R., and Kovacs, T. (2006). Noise, cost and

speed-accuracy trade-offs: decision-making in a decentralized system. J. R. Soc. Interface.

3, 243–254. doi: 10.1098/rsif.2005.0075

Mayr, U., Awh, E., and Laurey, P. (2003). Conflict adaptation effects in the absence of

executive control. Nat. Neurosci. 6, 450–452. doi: 10.1038/nn1051

Juliano, J. M., Spicer, R. P., Vourvopoulos, A., Lefebvre, S., Jann, K., Ard, T., et al.

(2020). Embodiment is related to better performance on a brain-computer interface in

immersive virtual reality: a pilot study. Sensors 20:1204. doi: 10.3390/s20041204

McCrea, D. A., and Rybak, I. A. (2007). Modeling the mammalian locomotor CPG:

insights from mistakes and perturbations. Prog. Brain Res. 165, 235–253. doi: 10.1016/

S0079-6123(06)65015-2

Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study

of trial-to-trial adjustments on the Simon task. Neuroimage 33, 399–405. doi: 10.1016/j.

neuroimage.2006.06.012

McCrea, D. A., and Rybak, I. A. (2008). Organization of mammalian locomotor

rhythm and pattern generation. Brain Res. Rev. 57, 134–146. doi: 10.1016/j.

brainresrev.2007.08.006

Kim, C., Kroger, J. K., and Kim, J. (2011). A functional dissociation of conflict

processing within anterior cingulate cortex. Hum. Brain Mapp. 32, 304–312. doi:

10.1002/hbm.21020

McIlroy, W. E., and Maki, B. E. (1993). Do anticipatory postural adjustments precede

compensatory stepping reactions evoked by perturbation? Neurosci. Lett. 164, 199–202.

doi: 10.1016/0304-3940(93)90891-n

Klein-Flügge, M. C., Kennerley, S. W., Friston, K., and Bestmann, S. (2016). Neural

signatures of value comparison in human cingulate cortex during decisions requiring

an effort-reward trade-off. J. Neurosci. 36, 10002–10015. doi: 10.1523/

jneurosci.0292-16.2016

Meinert, J., and Krämer, N. C. (2022). How the expertise heuristic accelerates

decision-making and credibility judgments in social media by means of effort reduction.

PLoS One 17:e0264428. doi: 10.1371/journal.pone.0264428

Kleinsorge, T. (2021). Stimulus-response conflict tasks and their use in clinical

psychology. Int. J. Environ. Res. Public Health 18:10657. doi: 10.3390/ijerph182010657

Merlet, A. N., Harnie, J., and Frigon, A. (2021). Inhibition and facilitation of the spinal

locomotor central pattern generator and reflex circuits by somatosensory feedback from

the lumbar and perineal regions after spinal cord injury. Front. Neurosci. 15:720542. doi:

10.3389/fnins.2021.720542

Konovalov, A., Hill, C., Daunizeau, J., and Ruff, C. C. (2021). Dissecting functional

contributions of the social brain to strategic behavior. Neuron 109, 3323–3337.e5. doi:

10.1016/j.neuron.2021.07.025

Frontiers in Human Neuroscience

18

frontiersin.org

Otani et al.

10.3389/fnhum.2023.1239207

Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., and Ijspeert, A. (2017).

The human central pattern generator for locomotion: does it exist and contribute to

walking? Neuroscientist 23, 649–663. doi: 10.1177/1073858417699790

Schulz, K. P., Bédard, A. V., Czarnecki, R., and Fan, J. (2011). Preparatory activity and

connectivity in dorsal anterior cingulate cortex for cognitive control. Neuroimage 57,

242–250. doi: 10.1016/j.neuroimage.2011.04.023

Mittelstädt, V., Miller, J., Leuthold, H., Mackenzie, I. G., and Ulrich, R. (2022). The

time-course of distractor-based activation modulates effects of speed-accuracy tradeoffs

in conflict tasks. Psychon. Bull. Rev. 29, 837–854. doi: 10.3758/s13423-021-02003-x

Shah, A. K., and Oppenheimer, D. M. (2008). Heuristics made easy: an effortreduction framework. Psychol. Bull. 134, 207–222. doi: 10.1037/0033-2909.134.2.207

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J.

27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Noga, B. R., Kriellaars, D. J., Brownstone, R. M., and Jordan, L. M. (2003). Mechanism

for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic

locomotor region. J. Neurophysiol. 90, 1464–1478. doi: 10.1152/jn.00034.2003

Shefchyk, S. J., and Jordan, L. M. (1985). Motoneuron input-resistance changes during

fictive locomotion produced by stimulation of the mesencephalic locomotor region. J.

Neurophysiol. 54, 1101–1108. doi: 10.1152/jn.1985.54.5.1101

Noga, B. R., Sanchez, F. J., Villamil, L. M., O’Toole, C., Kasicki, S., Olszewski, M., et al.

(2017). LFP oscillations in the mesencephalic locomotor region during voluntary

locomotion. Front. Neural Circuits 11:34. doi: 10.3389/fncir.2017.00034

Shenhav, A., Straccia, M. A., Botvinick, M. M., and Cohen, J. D. (2016). Dorsal

anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging

and economic choice. Cogn. Affect. Behav. Neurosci. 16, 1127–1139. doi: 10.3758/

s13415-016-0458-8

Norris, D., Kinoshita, S., Hall, J., and Henson, R. (2018). Is reading automatic? Are the

ERP correlates of masked priming really lexical? Lang. Cogn. Neurosci. 33, 1152–1167.

doi: 10.1080/23273798.2018.1493516

Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D.,

et al. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing

behavioural adaptation. Nature 488, 218–221. doi: 10.1038/nature11239

Oishi, N., Mima, T., Ishii, K., Bushara, K. O., Hiraoka, T., Ueki, Y., et al. (2007). Neural

correlates of regional EEG power change. Neuroimage 36, 1301–1312. doi: 10.1016/j.

neuroimage.2007.04.030

Shi, W., Ballesta, S., and Padoa-Schioppa, C. (2022). Economic choices under

simultaneous or sequential offers rely on the same neural circuit. J. Neurosci. 42, 33–43.

doi: 10.1523/JNEUROSCI.1265-21.2021

Omata, K., Hanakawa, T., Morimoto, M., and Honda, M. (2013). Spontaneous slow

fluctuation of EEG alpha rhythm reflects activity in deep-brain structures: a

simultaneous EEG-fMRI study. PLoS One 8:e66869. doi: 10.1371/journal.pone.0066869

Simon, J. R. (1969). Reactions toward the source of stimulation. J. Exp. Psychol. 81,

174–176. doi: 10.1037/h0027448

Padoa-Schioppa, C., and Conen, K. E. (2017). Orbitofrontal cortex: a neural circuit

for economic decisions. Neuron 96, 736–754. doi: 10.1016/j.neuron.2017.09.031

Sip, P., Kozłowska, M., Czysz, D., Daroszewski, P., and Lisiński, P. (2023). Perspectives

of motor functional upper extremity recovery with the use of immersive virtual reality

in stroke patients. Sensors 23:712. doi: 10.3390/s23020712

Poldrack, R. A., and Foerde, K. (2008). Category learning and the memory systems

debate. Neurosci. Biobehav. Rev. 32, 197–205. doi: 10.1016/j.neubiorev.2007.07.007

Poldrack, R. A., and Rodriguez, P. (2004). How do memory systems interact? Evidence

from human classification learning. Neurobiol. Learn. Mem. 82, 324–332. doi: 10.1016/j.

nlm.2004.05.003

Sochůrková, D., Rektor, I., Jurák, P., and Stančák, A. (2006). Intracerebral recording

of cortical activity related to self-paced voluntary movements: a Bereitschaftspotential

and event-related desynchronization/synchronization. SEEG study. Exp. Brain. Res. 173,

637–649. doi: 10.1007/s00221-006-0407-9

Prezenski, S., Brechmann, A., Wolff, S., and Russwinkel, N. (2017). A cognitive

modeling approach to strategy formation in dynamic decision making. Front. Psychol.

8:1335. doi: 10.3389/fpsyg.2017.01335

Soutschek, A., Taylor, P. C., Müller, H. J., and Schubert, T. (2013). Dissociable networks

control conflict during perception and response selection: a transcranial magnetic

stimulation study. J. Neurosci. 33, 5647–5654. doi: 10.1523/JNEUROSCI.4768-12.2013

Rainoldi, A., Melchiorri, G., and Caruso, I. (2004). A method for positioning

electrodes during surface EMG recordings in lower limb muscles. J. Neurosci. Methods

134, 37–43. doi: 10.1016/j.jneumeth.2003.10.014

Spruyt, A., and De Houwer, J. (2017). On the automaticity of relational stimulus

processing: the (extrinsic) relational Simon task. PLoS One 12:e0186606. doi: 10.1371/

journal.pone.0186606

Reutskaja, E., Lindner, A., Nagel, R., Andersen, R. A., and Camerer, C. F. (2018).

Choice overload reduces neural signatures of choice set value in dorsal striatum and

anterior cingulate cortex. Nat. Hum. Behav. 2, 925–935. doi: 10.1038/s41562-018-0440-2

Stoet, G. (2017). Sex differences in the Simon task help to interpret sex differences in

selective attention. Psychol. Res. 81, 571–581. doi: 10.1007/s00426-016-0763-4

Rich, E. L., and Wallis, J. D. (2016). Decoding subjective decisions from orbitofrontal

cortex. Nat. Neurosci. 19, 973–980. doi: 10.1038/nn.4320

Teixeira-Santos, A. C., Pinal, D., Pereira, D. R., Leite, J., Carvalho, S., and Sampaio, A.

(2020). Probing the relationship between late endogenous ERP components with fluid

intelligence in healthy older adults. Sci. Rep. 10:11167. doi: 10.1038/s41598-020-67924-4

Riva, G., Wiederhold, B. K., and Mantovani, F. (2019). Neuroscience of virtual reality:

from virtual exposure to embodied medicine. Cyberpsychol. Behav. Soc. Netw. 22, 82–96.

doi: 10.1089/cyber.2017.29099.gri

Trujillo, L. T. (2019). Mental effort and information-processing costs are inversely

related to global brain free energy during visual categorization. Front. Neurosci. 13:1292.

doi: 10.3389/fnins.2019.01292

Rustichini, A., and Padoa-Schioppa, C. (2015). A neuro-computational model of

economic decisions. J. Neurophysiol. 114, 1382–1398. doi: 10.1152/jn.00184.2015

Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., and Roelands, B.

(2017). The effects of mental fatigue on physical performance: a systematic review. Sports

Med. 47, 1569–1588. doi: 10.1007/s40279-016-0672-0

Ryu, H. X., and Kuo, A. D. (2021). An optimality principle for locomotor central

pattern generators. Sci. Rep. 11:13140. doi: 10.1038/s41598-021-91714-1

Vandierendonck, A. (2021). On the utility of integrated speed-accuracy measures

when speed-accuracy trade-off is present. J. Cogn. 4:22. doi: 10.5334/joc.154

Sadato, N., Nakamura, S., Oohashi, T., Nishina, E., Fuwamoto, Y., Waki, et al. (1998).

Neural networks for generation and suppression of alpha rhythm: a PET study.

Neuroreport 9, 893–897. doi: 10.1097/00001756-199803300-00024

Venkatraman, V., and Huettel, S. A. (2012). Strategic control in decision-making

under uncertainty. Eur. J. Neurosci. 35, 1075–1082. doi: 10.1111/j.1460-9568.2012.08009.x

Sakai, K., Hikosaka, O., Takino, R., Miyauchi, S., Nielsen, M., and Tamada, T. (2000).

What and when: parallel and convergent processing in motor control. J. Neurosci. 20,

2691–2700. doi: 10.1523/jneurosci.20-07-02691.2000

Venkatraman, V., Rosati, A. G., Taren, A. A., and Huettel, S. A. (2009). Resolving

response, decision, and strategic control: evidence for a functional topography in

dorsomedial prefrontal cortex. J. Neurosci. 29, 13158–13164. doi: 10.1523/

JNEUROSCI.2708-09.2009

Salek-Haddadi, A., Friston, K. J., Lemieux, L., and Fish, D. R. (2003). Studying

spontaneous EEG activity with fMRI. Brain Res. Brain Res. Rev. 43, 110–133. doi:

10.1016/s0165-0173(03)00193-0

Verbruggen, F., and Logan, G. D. (2009). Automaticity of cognitive control: goal

priming in response-inhibition paradigms. J. Exp. Psychol. Learn. Mem. Cogn. 35,

1381–1388. doi: 10.1037/a0016645

Salomone, M., Burle, B., Fabre, L., and Berberian, B. (2021). An electromyographic

analysis of the effects of cognitive fatigue on online and anticipatory action control.

Front. Hum. Neurosci. 14:615046. doi: 10.3389/fnhum.2020.615046

Vourvopoulos, A., Bermúdez, I., and Badia, S. (2016). Motor priming in virtual reality

can augment motor-imagery training efficacy in restorative brain-computer interaction:

a within-subject analysis. J. Neuroeng. Rehabil. 13:69. doi: 10.1186/s12984-016-0173-2

Santos, M. J., Kanekar, N., and Aruin, A. S. (2010). The role of anticipatory postural

adjustments in compensatory control of posture: 2. Biomechanical analysis. J.

Electromyogr. Kinesiol. 20, 398–405. doi: 10.1016/j.jelekin.2010.01.002

Wang, X., Öngür, D., Auerbach, R. P., and Yao, S. (2016). Cognitive vulnerability to

major depression: view from the intrinsic network and cross-network interactions. Harv.

Rev. Psychiatry 24, 188–201. doi: 10.1097/HRP.0000000000000081

Scerrati, E., Lugli, L., Nicoletti, R., and Umiltà, C. (2017). Comparing stroop-like and

Simon effects on perceptual features. Sci. Rep. 7:17815. doi: 10.1038/s41598-017-18185-1

Welch, D. B., and Seitz, A. R. (2013). Processing irrelevant location information:

practice and transfer effects in a Simon task. PLoS One 8:e64993. doi: 10.1371/journal.

pone.0064993

Schmidt, J. R. (2019). Evidence against conflict monitoring and adaptation: an

updated review. Psychon. Bull. Rev. 26, 753–771. doi: 10.3758/s13423-018-1520-z

Schmidt, J. R., Notebaert, W., and Van Den Bussche, E. V. (2015). Is conflict adaptation

an illusion? Front. Psychol. 6:172. doi: 10.3389/fpsyg.2015.00172

Wessel, J. R., Waller, D. A., and Greenlee, J. D. (2019). Non-selective inhibition of

inappropriate motor-tendencies during response-conflict by a fronto-subthalamic

mechanism. Elife 8:e42959. doi: 10.7554/eLife.42959

Schneider, W., and Chein, J. M. (2003). Controlled & automatic processing: behavior,

theory, and biological mechanisms. Cogn. Sci. 27, 525–559. doi: 10.1207/

s15516709cog2703_8

Wianda, E., and Ross, B. (2019). The roles of alpha oscillation in working memory

retention. Brain Behav. 9:e01263. doi: 10.1002/brb3.1263

Schreckenberger, M., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T.,

Buchholz, H. G., et al. (2004). The thalamus as the generator and modulator of EEG

alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans.

Neuroimage 22, 637–644. doi: 10.1016/j.neuroimage.2004.01.047

Frontiers in Human Neuroscience

Zhang, X., Yang, S., and Jiang, M. (2020). Rapid implicit extraction of abstract

orthographic patterns of Chinese characters during reading. PLoS One 15:e0229590. doi:

10.1371/journal.pone.0229590

19

frontiersin.org

Otani et al.

10.3389/fnhum.2023.1239207

Zhozhikashvili, N., Zakharov, I., Ismatullina, V., Feklicheva, I., Malykh, S., and

Arsalidou, M. (2022). Parietal alpha oscillations: cognitive load and mental toughness.

Brain Sci. 12:1135. doi: 10.3390/brainsci12091135

Frontiers in Human Neuroscience

Zipp, P. (1982). Recommendations for the standardization of lead positions in surface

electromyography. Eur. J. Appl. Physiol. Occup. Physiol. 50, 41–54. doi: 10.1007/

bf00952243

20

frontiersin.org

Otani et al.

10.3389/fnhum.2023.1239207

Glossary

APA

Anticipatory postural adaptation

COG

Center of gravity

dACC

dorsal anterior cingulate cortex

DBA

Deep-brain activity

DLPFC

dorsolateral prefrontal cortex

EEG

Electroencephalography

EMG

Electromyogram

ER-ACC

Event-related acceleration

ER-DBA

Event-related deep-brain a ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る