リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Automated sleep stage scoring employing a reasoning mechanism and evaluation of its explainability」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Automated sleep stage scoring employing a reasoning mechanism and evaluation of its explainability

堀江, 和正 Ota, Leo Miyamoto, Ryusuke 阿部, 高志 Suzuki, Yoko Kawana, Fusae Kokubo, Toshio 柳沢, 正史 北川, 博之 筑波大学 DOI:35896616

2022.11.15

概要

Scoring sleep stages from biological signals is an essential but labor-intensive inspection for sleep diagnosis. The existing automated scoring methods have achieved high accuracy but are not widely applied in clinical practice. In our understanding, the existing methods have failed to establish the trust of sleep experts (e.g., physicians and clinical technologists) due to a lack of ability to explain the evidences/clues for scoring. In this study, we developed a deep-learning-based scoring model with a reasoning mechanism called class activation mapping (CAM) to solve this problem. This mechanism explicitly shows which portions of the signals support our model’s sleep stage decision, and we verified that these portions overlap with the “characteristic waves,” which are evidences/clues used in the manual scoring process. In exchange for the acquisition of explainability, employing CAM makes it difficult to follow some scoring rules. Although we concerned the negative effect of CAM on the scoring accuracy, we have found that the impact is limited. The evaluation experiment shows that the proposed model achieved a scoring accuracy of 86.9%. It is superior to those of some existing methods and the inter-rater reliability among the sleep experts. These results suggest that Sleep-CAM achieved both explainability and required scoring accuracy for practical usage.

この論文で使われている画像

参考文献

1. Berry, R. et al. The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. Version 2.5. In American Academy for Sleep Medicine (2018).

2. Stephansen, J. B. et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. https://doi. org/10.1038/s41467-018-07229-3 (2018).

3. Chambon, S. et al. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 758–769. https://doi.org/10.1109/TNSRE.2018.2813138 (2018).

4. Supratak, A., Dong, H., Wu, C. & Guo, Y. Deepsleepnet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 1998–2008. https://doi.org/10.1109/TNSRE.2017.2721116 (2017).

5. Mousavi, S., Afghah, F. & Acharya, U. R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One. https://doi.org/10.1371/journal.pone.0216456 (2019).

6. Tsinalis, O., Matthews, P. M., Guo, Y. & Zafeiriou, S. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. Preprint at arXiv:1610.01683 (2016).

7. Biswal, S. et al. Sleepnet: Automated sleep staging system via deep learning. Preprint at arXiv:1707.08262 (2017).

8. Aggarwal, K., Khadanga, S., Joty, S. R., Kazaglis, L. & Srivastava, J. A structured learning approach with neural conditional random fields for sleep staging. In Proceeding of 2018 IEEE International Conference on Big Data (Big Data) 1318–1327. https://doi.org/10. 1109/BigData.2018.8622286 (2018).

9. Patanaik, A. et al. An end-to-end framework for real-time automatic sleep stage classification. Sleep. https://doi.org/10.1093/sleep/ zsy041 (2018).

10. Yildirim, O., Baloglu, U. B. & Acharya, U. R. A deep learning model for automated sleep stages classification using PSG signals. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph16040599 (2019).

11. Zhang, L., Fabbri, D., Upender, R. & Kent, D. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Sleep. https://doi.org/10.1093/sleep/zsz159 (2019).

12. Sun, H. et al. Sleep staging from electrocardiography and respiration with deep learning. Sleep. https://doi.org/10.1093/sleep/ zsz306 (2019).

13. Perslev, M. et al. U-time: A fully convolutional network for time series segmentation applied to sleep staging. Adv. Neural Inf. Process. Syst. 32, 4415–4426 (2019).

14. Kiranyaz, S., Ince, T. & Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589 (2016).

15. Fan, X. et al. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J. Biomed. Health Inform. 22(6), 1744–1753. https://doi.org/10.1109/JBHI.2018.2858789 (2018).

16. Wang, F. et al. Analysis for early seizure detection system based on deep learning algorithm. In Proceeding of 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2382–2389. https://doi.org/10.1109/BIBM.2018.8621089 (2018).

17. Cecotti, H. & Graser, A. Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445. https://doi.org/10.1109/TPAMI.2010.125 (2011).

18. Zhou, B. et al. Learning deep features for discriminative localization. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2921–2929. https://doi.org/10.1109/CVPR.2016.319 (2016).

19. Lin, M., Chen, Q. & Yan, S. Network in network. In Proceeding of International Conference on Learning Representations 1–10 (2014).

20. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at arXiv:1412.6980 (2015).

21. O’Reilly, C., Gosselin, N., Carrier, J. & Nielsen, T. Montreal archive of sleep studies: An open-access resource for instrument benchmarking & exploratory research. J. Seep Res. 23(6), 628–635. https://doi.org/10.1111/jsr.12169 (2014).

22. Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977).

23. Danker-Hopfe, H. et al. Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM. J. Sleep Res. 18(1), 74–84 (2009).

24. Krippendorff, K. Content Analysis: An Introduction to Its Methodology (Sage Publications, 1980).

25. Danker-Hopfe, H. et al. Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. J. Sleep Res. 13(1), 63–69. https://doi.org/10.1046/j.1365-2869.2003.00375.x (2004).

26. Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (University of California, Brain Research Institute, 1968).

27. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf (2015).

28. Chollet, F. et al. Keras. Software available from keras.io (2015).

29. Center for Computational Sciences, University of Tsukuba. Cygnus. https://www.ccs.tsukuba.ac.jp/eng/supercomputers/. Available at July 7th (2020).

30. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceeding of International Conference on Learning Representations (ICLR) 1–14. https://doi.org/10.1016/j.infsof.2008.09.005 (2015).

参考文献をもっと見る