リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influences of small-scale oscillations on growth inhibition and ultrastructural changes of Microcystis cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influences of small-scale oscillations on growth inhibition and ultrastructural changes of Microcystis cells

Han, Jisun Jeon, Bong-Seok Mizuno, Katsunori Yoshida, Kenji Park, Ho-Dong 信州大学 DOI:30623747

2021.02.15

概要

We investigated the effects of small-scale oscillation (SSO) on toxic Microcystis cells. The oscillating device was made of silicon with two axes that had a diameter of similar to 40 mm, and a frequency of 2.5 Hz was observed at 150 rpm. The SSO was effective in inhibiting Microcystis growth. Microcystin release was not observed, whereas cell density barely increased in the oscillating group. Cell size and morphology of the oscillating group were no different from the control group. However, cell quotas of chl.a and microcystin in the oscillating group were half the level of the control group. Crucially, a number of large-sized holes were observed and layered long linear thylakoids were rarely observed in the oscillating group. Therefore, SSO was found to be very effective in Microcystis growth inhibition, and it caused ultrastructural changes without damage to the cell membrane and subsequent microcystin release.

この論文で使われている画像

参考文献

Moisander, P.H.; Hench, J.L.; Kononen, K.; Paerl, H.W. Small‐scale shear effects on

heterocystous cyanobacteria. Limnology and Oceanography, 2002, 47(1), 108-119.

Huisman, J.; Sharples, J.; Stroom, J.M.; Visser, P.M.; Kardinaal, W.E.A.; Verspagen, J.M.;

Sommeijer, B. Changes in turbulent mixing shift competition for light between

phytoplankton species. Ecology, 2004, 85(11), 2960-2970.

Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world

experiencing anthropogenic and climatic-induced change. Science of the Total

Environment, 2011, 409(10), 1739-1745.

Reynolds, C.S. The ecology of phytoplankton; Cambridge University Press; Cambridge, UK,

2006.

Huisman, J.; Matthijs, H.C.; Visser, P.P.M. Harmful cyanobacteria; Springer; Dordrecht,

Netherlands, 2005; 3rd.

Carmichael, W. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of applied

microbiology, 1992, 72(6), 445-459.

Dawson, R.M. The toxicology of microcystins. Toxicon, 1998, 36(7), 953-962.

Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nichols, S.A. Restoration and management of lakes

and reservoirs, 3rd Ed.; CRC press, Inc.; Boca Raton, Florida, USA, 2005, 177-238.

Jančula, D.; Maršálek, B. Critical review of actually available chemical compounds for

prevention and management of cyanobacterial blooms. Chemosphere, 2011, 85(9), 14151422.

Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control

cyanobacterial blooms: a review. Aquatic Ecology, 2016, 50(3), 423-441.

Han, J.; Jeon, B.-S.; Park, H.-D. Microcystin release and Microcystis cell damage mechanism

13

by alum treatment with long-term and large dose as in-lake treatment. Journal of

Environmental Science and Health, Part A, 2016, 51(6), 455-462.

Peterson, H.; Hrudey, S.; Cantin, I.; Perley, T.; Kenefick, S. Physiological toxicity, cell

membrane damage and the release of dissolved organic carbon and geosmin by

Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research,

1995, 29(6), 1515-1523.

Jeon, B.-S.; Han, J.; Kim, S.-K.; Oh, H.-C.; Park, H.-D. The removal of Microcystis

ichthyoblabe cells and its hepatotoxin microcystin–LR during electrooxidation process

using Pt/Ti electrodes. Journal of Environmental Science and Health, Part A, 2015, 50(6),

563-570.

Mantzouki, E.; Visser, P.M.; Bormans, M.; Ibelings, B.W. Understanding the key ecological

traits of cyanobacteria as a basis for their management and control in changing lakes.

Aquatic ecology, 2016, 50(3), 333-350.

Upadhyay, S.; Bierlein, K.A.; Little, J.C.; Burch, M.D.; Elam, K.P.; Brookes, J.D. Mixing

potential of a surface-mounted solar-powered water mixer (SWM) for controlling

cyanobacterial blooms. Ecological engineering, 2013, 61, 245-250.

Antenucci, J.P.; Ghadouani, A.; Burford, M.A.; Romero, J.R. The long‐term effect of artificial

destratification on phytoplankton species composition in a subtropical reservoir.

Freshwater Biology, 2005, 50(6), 1081-1093.

Huisman, J.; Sommeijer, B. Population dynamics of sinking phytoplankton in light-limited

environments: simulation techniques and critical parameters. Journal of Sea Research,

2002, 48(2), 83-96.

Visser, P.; Ibelings, B.; van der Veer, B.; Koedood, J.; Mur, L. Artificial mixing prevents

nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the

Netherlands. Freshwater Biology, 1996, 36, 435-450.

14

O’Brien, K.R.; Meyer, D.L.; Waite, A.M.; Ivey, G.N.; Hamilton, D.P. Disaggregation of

Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a gridstirred tank. Hydrobiologia, 2004, 519(1-3), 143-152.

Zhao, H.; Zhu, W.; Chen, H.; Zhou, X.; Wang, R.; Li, M. Numerical simulation of the vertical

migration of Microcystis (cyanobacteria) colonies based on turbulence drag. Journal of

Limnology, 2016, 76(1).

Xiao, Y.; Li, Z.; Li, C.; Zhang, Z.; Guo, J. Effect of Small-Scale Turbulence on the Physiology

and Morphology of Two Bloom-Forming Cyanobacteria. PLOS ONE, 2016, 11(12),

e0168925.

Regel, R.H.; Brookes, J.D.; Ganf, G.G.; Griffiths, R.W. The influence of experimentally

generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain.

Hydrobiologia, 2004, 517(1-3), 107-120.

Amato, A.; Fortini, S.; Watteaux, R.; Diano, M.; Espa, S.; Esposito, S.; Ferrante, M.I.; Peters,

F.; Iudicone, D.; Ribera d’Alcalà, M. TURBOGEN: Computer-controlled vertically

oscillating grid system for small-scale turbulence studies on plankton. Review of

Scientific Instruments, 2016, 87(3), 035119.

Ichimura, T. 2.

Isolation and culture methods of algae. 2.5.B. Freshwater algae [2.

Sôrui no bunri to baiyôhô. 2.5.B. Tansui sôrui].

In Methods in

Phycological Studies

[Sôrui Kenkyûhô], Eds. by Nishizawa, K. & Chihara, M. Kyoritu syuppan, Tokyo (in

Japanese without English title), 1979, 294-305.

UNESCO. Determination of photosynthetic pigments in sea-water. Monographs on

oceanographic methodology, 1966, 1, 1-69.

Han, J.; Jeon, B.-S.; Futatsugi, N.; Park, H.-D. The effect of alum coagulation for in-lake

treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm

experiments. Ecotoxicology and Environmental Safety, 2013, 96, 17-23.

15

Bozzola, J.J.; Russell, L.D. Electron microscopy: principles and techniques for biologists, 2nd

Ed.; Jones & Bartlett Learning; Sudbery, Massachusetts, USA, 1999.

Ray, T.L.; Payne, C.D. Scanning electron microscopy of epidermal adherence and cavitation in

murine candidiasis: a role for Candida acid proteinase. Infection and immunity, 1988,

56(8), 1942-1949.

Orr, P.T.; Jones, G.J. Relationship between microcystin production and cell division rates in

nitrogen‐limited Microcystis aeruginosa cultures. Limnology and Oceanography, 1998,

43(7), 1604-1614.

Lyck, S. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and

carbohydrate during different growth phases of a batch culture experiment with

Microcystis aeruginosa. Journal of Plankton Research, 2004, 26(7), 727-736.

Shi, L.; Carmichael, W.W.; Miller, I. Immuno-gold localization of hepatotoxins in

cyanobacterial cells. Archives of microbiology, 1995, 163(1), 7-15.

Young, F.M.; Thomson, C.; Metcalf, J.S.; Lucocq, J.M.; Codd, G.A. Immunogold localisation

of microcystins in cryosectioned cells of Microcystis. Journal of structural biology, 2005,

151(2), 208-214.

Young, F.M.; Morrison, L.F.; James, J.; Codd, G.A. Quantification and localization of

microcystins in colonies of a laboratory strain of Microcystis (Cyanobacteria) using

immunological methods. European Journal of Phycology, 2008, 43(2), 217-225.

Carmichael, W. Health effects of toxin-producing cyanobacteria:" The CyanoHABs". Human

and ecological risk assessment: an international journal, 2001, 7(5), 1393-1407.

Lam, A.; Prepas, E. In situ evaluation of options for chemical treatment of hepatotoxic

cyanobacterial blooms. Canadian journal of fisheries and aquatic Sciences, 1997, 54(8),

1736-1742.

LIST OF FIGURE CAPTIONS

16

FIGURE 1. Characteristics of the oscillating device. (a) The oscillating device was made of

silicon with two axes that have a diameter of ~40 mm. (b) Water flows downwards

underneath the oscillating device and rises upwards at the sides of chamber when the axes

rotate in the counterclockwise direction

FIGURE 2. Changes in cell density after SSO treatment. (a) Cell density measured by optical

density at 405 nm. (b) Cell density measured by flow cytometry. White circles: control (no

device); gray circles: stirring group; black circles: oscillating group.

FIGURE. 3. Changes in intra- and extracellular microcystin concentrations following SSO

treatment. Bars: intracellular microcystin-LR concentration; circles: extracellular

microcystin-LR concentration. White circles and bars: control (no device); gray circles and

bars: stirring group; black circles and bars: oscillating group. Extracellular MC-LR

concentrations were below the detection limit in all experimental groups.

FIGURE 4. Changes in cell size following SSO treatment. White circles: control (no device);

gray circles: stirring group; black circles: oscillating group.

FIGURE 5. Scanning electron microscopy (SEM) micrographs of Microcystis cells following

SSO treatment. (a) Control (normal and healthy cells); (b) SSO treated cells.

FIGURE 6. Transmission electron microscopy (TEM) micrographs of Microcystis cells

following SSO treatment. (a) Control cell (normal and healthy cell); (b) SSO treated cell.

Gray arrow: Thylakoids; black arrow: normal gas vesicles; white arrow: damaged gas

17

vesicles.

FIGURE 7. Changes in cell density following SSO treatment in repetitive experimental

results. White circles: control (no device); gray circles: stirring group; black circles:

oscillating group.

18

Fig. 1

0.8

(a)

OD405nm

Control

Stirring

Oscillating

0.6

0.4

0.2

-1

Cell density (cells mL )

Control

Stirring

Oscillating

3x106

Time (day)

10

(b)

2x106

1x106

Time (day)

Fig. 2

10

-1

Control

Stirring

Oscillating

Control

Stirring

Oscillating

100

80

20

15

60

10

40

20

Extracellular MC-LR (g L )

-1

Intracellular MC-LR (g L )

120

Time (day)

Fig. 3

10

Cell size (m)

Control

Stirring

Oscillating

Time (day)

Fig. 4

10

Fig. 5

Fig. 6

Integrated cell biomass (%)

Control

Oscillating

Stirring

400

300

200

100

Time (day)

Fig. 7

10

TABLE 1. Variations of cellular chl.a content following SSO treatment.

(Unit: pg cell-1)

Time

3rd

5th

9th

(before)

Control

0.23

0.27

0.32

0.42

Oscillating group

0.22

0.24

0.22

0.19

TABLE 2. Variations of cellular microcystin content following SSO treatment.

(Unit: fg cell–1)

Time (day)

4th

6th

10th

(before)

Control

40

39

42

41

Oscillating group

37

25

25

23

Table 1 and 2

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る