リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes

Inoue, Chisato Sobue, Sayaka Mizutani, Naoki Kawamoto, Yoshiyuki Nishizawa, Yuji Ichihara, Masatoshi Takeuchi, Toshiyuki Hayakawa, Fumihiko Suzuki, Motoshi Ito, Tetsuro Nozawa, Yoshinori Murate, Takashi 名古屋大学

2020.05

概要

Resveratrol (RSV) has recently attracted keen interest because of its pleiotropic effects. It exerts a wide range of health-promoting effects. In addition to health-promoting effects, RSV possesses anti-carcinogenic activity. However, a non-physiological concentration is needed to achieve an anti-cancer effect, and its in vivo bioavailability is low. Therefore, the clinical application of phytochemicals requires alternative candidates that induce the desired effects at a lower concentration and with increased bioavailability. We previously reported a low IC50 of vaticanol C (VTC), an RSV tetramer, among 12 RSV derivatives (Ito T. et al, 2003). However, the precise mechanism involved remains to be determined. Here, we screened an in-house chemical library bearing RSV building blocks ranging from dimers to octamers for cytotoxic effects in several leukemia and cancer cell lines and their anti-cancer drug-resistant sublines. Among the compounds, VTC exhibited the highest cytotoxicity, which was partially inhibited by a caspase 3 inhibitor, Z-VAD-FMK. VTC decreased the expression of sphingosine kinase 1, sphingosine kinase 2 and glucosylceramide synthase by transcriptional or post-transcriptional mechanisms, and increased cellular ceramides/dihydroceramides and decreased sphingosine 1-phosphate (S1P). VTC-induced sphingolipid rheostat modulation (the ratio of ceramide/S1P) is thought to be involved in cellular apoptosis. Indeed, exogenous S1P addition modulated VTC cytotoxicity significantly. A combination of SPHK1, SPHK2, and GCS chemical inhibitors induced sphingolipid rheostat modulation, cell growth suppression, and cytotoxicity similar to that of VTC. These results suggest the involvement of sphingolipid metabolism in VTC-induced cytotoxicity, and indicate VTC is a promising prototype for translational research.

この論文で使われている画像

参考文献

1. Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL. Multiple molecular targets of resveratrol: anticarcinogenic mechanisms. Arch Biochem Biophys. 2009;486(2):95–102.

2. Kulkarni SS, Canto C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–1123.

3. Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived

from grapes. Science. 1997;275(5297):218–220.

4. Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties

of plant-derived polyphenolic compounds. IUBMB life. 2000;50(3):167–171.

5. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18(1):33–50.

6. Edsall LC, Van Brocklyn JR, Cuvillier O, Kleuser B, Spiegel S. N,N-Dimethylsphingosine is a potent

competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of

sphingosine 1-phosphate and ceramide. Biochemistry. 1998;37(37):12892–12898.

7. Mizutani N, Omori Y, Kawamoto Y, et al. Resveratrol-induced transcriptional up-regulation of ASMase

(SMPD1) of human leukemia and cancer cells. Biochem Biophys Res Commun. 2016;470(4):851–856.

8. Ito T, Akao Y, Yi H, et al. Antitumor effect of resveratrol oligomers against human cancer cell lines and

the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis. 2003;24(9):1489–1497.

9. Nishida Y, Mizutani N, Inoue M, et al. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase

IV transcription of daunorubicin-resistant leukemia cell lines. Biochim Biophys Acta. 2014;1839(4):265–274.

10. Sobue S, Mizutani N, Aoyama Y, et al. Mechanism of paclitaxel resistance in a human prostate cancer cell

line, PC3-PR, and its sensitization by cabazitaxel. Biochem Biophys Res Commun. 2016;479(4):808–813.

11. Inoue C, Sobue S, Aoyama Y, et al. BCL2 inhibitor ABT-199 and JNK inhibitor SP600125 exhibit synergistic

cytotoxicity against imatinib-resistant Ph+ ALL cells. Biochem Biophys Rep. 2018;15:69–75.

12. Sobue S, Nemoto S, Murakami M, et al. Implications of sphingosine kinase 1 expression level for the

cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J

Hematol. 2008;87(3):266–275.

13. Triola G, Fabrias G, Casas J, Llebaria A. Synthesis of cyclopropene analogues of ceramide and their effect

on dihydroceramide desaturase. J Org Chem. 2003;68(26):9924–9932.

14. Ito H, Murakami M, Furuhata A, et al. Transcriptional regulation of neutral sphingomyelinase 2 gene

expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin.

Biochim Biophys Acta. 2009;1789(11-12):681–690.

15. Furuhata A, Kimura A, Shide K, et al. p27 deregulation by Skp2 overexpression induced by the JAK2V617

mutation. Biochem Biophys Res Commun. 2009;383(4):411–416.

16. Sobue S, Iwasaki T, Sugisaki C, et al. Quantitative RT-PCR analysis of sphingolipid metabolic enzymes in

acute leukemia and myelodysplastic syndromes. Leukemia. 2006;20(11):2042–2046.

17. Tanaka K, Tamiya-Koizumi K, Hagiwara K, et al. Role of down-regulated neutral ceramidase during

all-trans retinoic acid-induced neuronal differentiation in SH-SY5Y neuroblastoma cells. J Biochem.

2012;151(6):611–620.

18. Kasumov T, Huang H, Chung YM, Zhang R, McCullough AJ, Kirwan JP. Quantification of ceramide

species in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry.

Anal Biochem. 2010;401(1):154–161.

19. Nakanishi H, Ogiso H, Taguchi R. Qualitative and quantitative analyses of phospholipids by LC-MS for

lipidomics. Methods Mol Biol. 2009;579:287–313.

20. Bernardo K, Hurwitz R, Zenk T, et al. Purification, characterization, and biosynthesis of human acid

ceramidase. J Biol Chem. 1995;270(19):11098–11102.

279

VTC-induced apoptosis and sphingolipid

21. Yun JM, Chien A, Jialal I, Devaraj S. Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress

in the diabetic milieu: mechanistic insights. J Nutr Biochem. 2012;23(7):699–705.

22. Baran Y, Bielawski J, Gunduz U, Ogretmen B. Targeting glucosylceramide synthase sensitizes imatinibresistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol.

2011;137(10):1535–1544.

23. Triola G, Fabrias G, Dragusin M, et al. Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanami de (GT11) in primary cultured

cerebellar neurons. Mol Pharmacol. 2004;66(6):1671–1678.

24. McNaughton M, Pitman M, Pitson SM, Pyne NJ, Pyne S. Proteasomal degradation of sphingosine

kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or

ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget.

2016;7(13):16663–16675.

25. Fukui M, Yamabe N, Zhu BT. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast

cancer cells in vitro and in vivo. Eur J Cancer. 2010;46(10):1882–1891.

26. Mondal A, Bennett LL. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast

cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed Pharmacother.

2016;84:1906–1914.

27. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov.

2006;5(6):493–506.

28. Wightman EL, Reay JL, Haskell CF, Williamson G, Dew TP, Kennedy DO. Effects of resveratrol alone or in

combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects:

a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr. 2014;112(2):203–213.

29. Colin D, Gimazane A, Lizard G, et al. Effects of resveratrol analogs on cell cycle progression, cell

cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells. Int J Cancer.

2009;124(12):2780–2788.

30. Lim KG, Gray AI, Pyne S, Pyne NJ. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect

sphingosine kinase 1 expression and cancer cell growth and survival. Br J Pharmacol. 2012;166(5):1605–

1616.

31. Zhu Q, Yang J, Zhu R, et al. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide

plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis. 2016;21(9):1033–1044.

32. Siddique MM, Bikman BT, Wang L, et al. Ablation of dihydroceramide desaturase confers resistance to

etoposide-induced apoptosis in vitro. PLoS One. 2012;7(9):e44042.

33. Casasampere M, Ordonez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: therapeutic agents

and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids.

2016;197:33–44.

34. Zhang Y, Wang Y, Wan Z, Liu S, Cao Y, Zeng Z. Sphingosine kinase 1 and cancer: a systematic review

and meta-analysis. PLoS One. 2014;9(2):e90362.

35. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC. Glucosylceramide synthase blockade

down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs.

Cancer Res. 2005;65(9):3861–3867.

36. Li QF, Huang WR, Duan HF, Wang H, Wu CT, Wang LS. Sphingosine kinase-1 mediates BCR/ABL-induced

upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene. 2007;26(57):7904–7908.

37. Salas A, Ponnusamy S, Senkal CE, et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor

2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood.

2011;117(22):5941–5952.

38. Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC. Accumulation of glucosylceramides in multidrugresistant cancer cells. J Biol Chem. 1996;271(32):19530–19536.

39. Itoh M, Kitano T, Watanabe M, et al. Possible role of ceramide as an indicator of chemoresistance:

decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase

in chemoresistant leukemia. Clin Cancer Res. 2003;9(1):415–423.

40. Huang WC, Tsai CC, Chen CL, et al. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid

leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated

apoptosis. FASEB J. 2011;25(10):3661–3673.

41. Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S. Sphingosine kinase 2 is a nuclear

protein and inhibits DNA synthesis. J Biol Chem. 2003;278(47):46832–46839.

42. White MD, Chan L, Antoon JW, Beckman BS. Targeting ovarian cancer and chemoresistance through

selective inhibition of sphingosine kinase-2 with ABC294640. Anticancer Res. 2013;33(9):3573–3579.

280

Chisato Inoue et al

43. Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB. Piceatannol inhibits

TNF-induced NF-kappaB activation and NF-kappaB-mediated gene expression through suppression of

IkappaBalpha kinase and p65 phosphorylation. J Immunol. 2002;169(11):6490–6497.

...

参考文献をもっと見る