リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「PD-L1 upregulation by lytic induction of Epstein-Barr Virus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

PD-L1 upregulation by lytic induction of Epstein-Barr Virus

Yanagi, Yusuke Hara, Yuya Mabuchi, Seiyo Watanabe, Takahiro Sato, Yoshitaka Kimura, Hiroshi Murata, Takayuki 名古屋大学

2022.03

概要

Epstein-Barr virus (EBV) is an etiologic agent of infectious mononucleosis and several malignancies. Here, we found that reactivation of EBV resulted in increased programmed cell death-ligand 1 (PD-L1) expression in a cell type-dependent manner. Lytic induction in EBV-positive Akata, AGS, MutuI, and Jijoye cell lines increased PD-L1 levels, but cells such as EBV-negative Akata, MutuIII, and P3HR1 did not have increased PD-L1. EBV in the P3HR1 cell line has a deletion in the EBNA2 gene, while EBV in its parental cell line, Jijoye, has the complete EBNA2 gene. PD-L1 expression by lytic induction was reduced when EBNA2 was knocked down. In addition, pharmacological inhibition indicated involvement of nuclear factor kappa B, mitogen-activated protein kinase, and AKT signaling. These results suggest that EBV likely evades immunity by inducing PD-L1 upon reactivation, through the increased expression of EBNA2 and activation of signaling pathways.

参考文献

1. Cohen, J.I., Epstein-Barr virus infection. N Engl J Med, 2000. 343(7): p. 481-92.

2. Balfour, H.H., Jr., S.K. Dunmire, and K.A. Hogquist, Infectious mononucleosis. Clin Transl Immunology, 2015. 4(2): p. e33.

3. Pattle, S.B. and P.J. Farrell, The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther, 2006. 6(11): p. 1193-205.

4. Shannon-Lowe, C. and A. Rickinson, The Global Landscape of EBV-Associated Tumors. Front Oncol, 2019. 9: p. 713.

5. Frost, T.C. and B.E. Gewurz, Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol, 2018. 32: p. 15-23.

6. Kanda, T., EBV-Encoded Latent Genes. Adv Exp Med Biol, 2018. 1045: p. 377-394.

7. Murata, T., Y. Sato, and H. Kimura, Modes of infection and oncogenesis by the EpsteinBarr virus. Rev Med Virol, 2014. 24(4): p. 242-53.

8. Kenney, S.C. and J.E. Mertz, Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol, 2014. 26: p. 60-8.

9. McKenzie, J. and A. El-Guindy, Epstein-Barr Virus Lytic Cycle Reactivation. Curr Top Microbiol Immunol, 2015. 391: p. 237-61.

10. Murata, T., Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol, 2014. 58(6): p. 307-17.

11. Hammerschmidt, W. and B. Sugden, Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol, 2013. 5(1): p. a013029.

12. Tsurumi, T., M. Fujita, and A. Kudoh, Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol, 2005. 15(1): p. 3-15.

13. Yanagi, Y., et al., Initial Characterization of the Epstein(-)Barr Virus BSRF1 Gene Product. Viruses, 2019. 11(3).

14. Chamoto, K., M. Al-Habsi, and T. Honjo, Role of PD-1 in Immunity and Diseases. Curr Top Microbiol Immunol, 2017. 410: p. 75-97.

15. Jiang, X., et al., Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer, 2019. 18(1): p. 10.

16. Golrokh Mofrad, M., D. Taghizadeh Maleki, and E. Faghihloo, The roles of programmed death ligand 1 in virus-associated cancers. Infect Genet Evol, 2020. 84: p. 104368.

17. Murata, T., Human Herpesvirus and the Immune Checkpoint PD-1/PD-L1 Pathway: Disorders and Strategies for Survival. Microorganisms, 2021. 9(4).

18. Nagato, T., et al., Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol Immunother, 2017. 66(7): p. 877-890.

19. Satou, A. and S. Nakamura, EBV-positive B-cell lymphomas and lymphoproliferative disorders: Review from the perspective of immune escape and immunodeficiency. Cancer Med, 2021.

20. Usui, G., et al., DNA Methylation and Genetic Aberrations in Gastric Cancer. Digestion, 2021. 102(1): p. 25-32.

21. Kataoka, K., et al., Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia, 2019. 33(7): p. 1687-1699.

22. Okuno, Y., et al., Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol, 2019. 4(3): p. 404-413.

23. Sasaki, S., et al., EBV-associated gastric cancer evades T-cell immunity by PD1/PD-L1 interactions. Gastric Cancer, 2019. 22(3): p. 486-496.

24. Cancer Genome Atlas Research, N., Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014. 513(7517): p. 202-9.

25. Green, M.R., et al., Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res, 2012. 18(6): p. 1611-8.

26. Uccini, S., et al., PD-L1 expression in pediatric Epstein-Barr virus positive classic Hodgkin lymphoma is not associated with 9p24.1 amplification. Pediatr Blood Cancer, 2019. 66(7): p. e27757.

27. Anastasiadou, E., et al., Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 2019. 33(1): p. 132-147.

28. Yanagi, Y., et al., RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 2021. 557: p. 44-54.

29. Bi, X.W., et al., PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol, 2016. 9(1): p. 109.

30. Fang, W., et al., EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget, 2014. 5(23): p. 12189-202.

31. Kase, K., et al., Epstein-Barr Virus LMP1 Induces Soluble PD-L1 in Nasopharyngeal Carcinoma. Microorganisms, 2021. 9(3).

32. Chen, J., et al., Expression of PD-1 and PD-Ls in Kaposi's sarcoma and regulation by oncogenic herpesvirus lytic reactivation. Virology, 2019. 536: p. 16-19.

33. Murata, T., et al., TORC2, a coactivator of cAMP-response element-binding protein, promotes Epstein-Barr virus reactivation from latency through interaction with viral BZLF1 protein. J Biol Chem, 2009. 284(12): p. 8033-41.

34. Altiok, E., et al., Host-cell-phenotype-dependent control of the BCR2/BWR1 promoter complex regulates the expression of Epstein-Barr virus nuclear antigens 2- 6. Proc Natl Acad Sci U S A, 1992. 89(3): p. 905-9.

35. Gregory, C.D., M. Rowe, and A.B. Rickinson, Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol, 1990. 71 ( Pt 7): p. 1481-95.

36. Hinuma, Y. and J.T. Grace, Jr., Cloning of immunoglobulin-producing human leukemic and lymphoma cells in long-term cultures. Proc Soc Exp Biol Med, 1967. 124(1): p. 107-11.

37. King, W., et al., Epstein-Barr virus DNA XII. A variable region of the Epstein-Barr virus genome is included in the P3HR-1 deletion. J Virol, 1982. 43(3): p. 979-86.

38. Brown, H.J., et al., NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol, 2003. 77(15): p. 8532-40.

39. Saito, S., et al., Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-kappaB signaling during productive replication. J Virol, 2013. 87(7): p. 4060-70.

40. Li, X. and W. Zhang, Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol, 2021. 95: p. 107553.

41. Feng, W.H., et al., Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol, 2004. 78(4): p. 1893-902.

42. Li, H., et al., Therapies based on targeting Epstein-Barr virus lytic replication for EBVassociated malignancies. Cancer Sci, 2018. 109(7): p. 2101-2108.

43. Yiu, S.P.T., et al., Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel), 2020. 12(8).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る