リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model.

NGUYEN Cong Thanh 0000-0002-5973-6210 SUZUKI Saori 40781430 ITOH Yasushi 90324566 ISHIGAKI Hirohito 90432301 NAKAYAMA Misako 00510306 HAYASHI Kaori 70569251 MATSUNO Keita OKAMATSU Masatoshi SAKODA Yoshihiro KIDA Hiroshi OGASAWARA Kazumasa 20169163 滋賀医科大学

2020.06.23

概要

Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.

この論文で使われている画像

参考文献

376

1.

OIE. 2018. OIE Situation Report for Avian Influenza.1-12.

377

2.

Li C, Chen H. 2014. Enhancement of influenza virus transmission by gene reassortment.

378

379

Curr Top Microbiol Immunol 385:185-204.

3.

Ottmann M, Duchamp MB, Casalegno JS, Frobert E, Moules V, Ferraris O, Valette M,

380

Escuret V, Lina B. 2010. Novel influenza A(H1N1) 2009 in vitro reassortant viruses with

381

oseltamivir resistance. Antivir Ther 15:721-726.

382

4.

383

Neumann G, Noda T, Kawaoka Y. 2009. Emergence and pandemic potential of swineorigin H1N1 influenza virus. Nature 459:931-939.

384

5.

OIE. 2017. OIE Situation Report for Avian Influenza 1-14.

385

6.

Jiang H, Wu P, Uyeki TM, He J, Deng Z, Xu W, Lv Q, Zhang J, Wu Y, Tsang TK, Kang

386

M, Zheng J, Wang L, Yang B, Qin Y, Feng L, Fang VJ, Gao GF, Leung GM, Yu H,

17

387

Cowling BJ. 2017. Preliminary Epidemiologic Assessment of Human Infections With

388

Highly Pathogenic Avian Influenza A(H5N6) Virus, China. Clin Infect Dis 65:383-388.

389

7.

Bi Y, Tan S, Yang Y, Wong G, Zhao M, Zhang Q, Wang Q, Zhao X, Li L, Yuan J, Li H,

390

Li H, Xu W, Shi W, Quan C, Zou R, Li J, Zheng H, Yang L, Liu WJ, Liu D, Wang H,

391

Qin Y, Liu L, Jiang C, Liu W, Lu L, Gao GF, Liu Y. 2019. Clinical and immunological

392

characteristics of human infections with H5N6 avian influenza virus. Clin Infect Dis

393

68:1100-1109. doi:10.1093/cid/ciy681.

394

8.

Sun H, Pu J, Wei Y, Sun Y, Hu J, Liu L, Xu G, Gao W, Li C, Zhang X, Huang Y, Chang

395

KC, Liu X, Liu J. 2016. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit

396

Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in

397

Model Ferrets. J Virol 90:6235-6243.

398

9.

Hui KP, Chan LL, Kuok DI, Mok CK, Yang ZF, Li RF, Luk GS, Lee EF, Lai JC, Yen

399

HL, Zhu H, Guan Y, Nicholls JM, Peiris JS, Chan MC. 2017. Tropism and innate host

400

responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the

401

human respiratory tract. Eur Respir J 49:pii: 1601710. doi: 10.1183/13993003.01710-

402

2016.

403

10.

Zhao Z, Guo Z, Zhang C, Liu L, Chen L, Zhang C, Wang Z, Fu Y, Li J, Shao H, Luo Q,

404

Qian J, Liu L. 2017. Avian Influenza H5N6 Viruses Exhibit Differing Pathogenicities

405

and Transmissibilities in Mammals. Sci Rep 7:16280.

406

11.

Herfst S, Mok CKP, van den Brand JMA, van der Vliet S, Rosu ME, Spronken MI, Yang

407

Z, de Meulder D, Lexmond P, Bestebroer TM, Peiris JSM, Fouchier RAM, Richard M.

408

2018. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation

18

409

Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere 3: pii:

410

e00405-17. doi: 10.1128/mSphere.00405-17.

411

12.

412

413

Hussain M, Galvin HD, Haw TY, Nutsford AN, Husain M. 2017. Drug resistance in

influenza A virus: the epidemiology and management. Infect Drug Resist 10:121-134.

13.

Gaymard A, Charles-Dufant A, Sabatier M, Cortay JC, Frobert E, Picard C, Casalegno JS,

414

Rosa-Calatrava M, Ferraris O, Valette M, Ottmann M, Lina B, Escuret V. 2016. Impact

415

on antiviral resistance of E119V, I222L and R292K substitutions in influenza A viruses

416

bearing a group 2 neuraminidase (N2, N3, N6, N7 and N9). J Antimicrob Chemother

417

71:3036-3045.

418

14.

Fiore AE, Fry A, Shay D, Gubareva L, Bresee JS, Uyeki TM, Centers for Disease C,

419

Prevention. 2011. Antiviral agents for the treatment and chemoprophylaxis of influenza

420

recommendations of the Advisory Committee on Immunization Practices (ACIP).

421

MMWR Recomm Rep 60:1-24.

422

15.

Dong G, Peng C, Luo J, Wang C, Han L, Wu B, Ji G, He H. 2015. Adamantane-resistant

423

influenza a viruses in the world (1902-2013): frequency and distribution of M2 gene

424

mutations. PLoS One 10:e0119115.

425

16.

Itoh Y, Shichinohe S, Nakayama M, Igarashi M, Ishii A, Ishigaki H, Ishida H, Kitagawa

426

N, Sasamura T, Shiohara M, Doi M, Tsuchiya H, Nakamura S, Okamatsu M, Sakoda Y,

427

Kida H, Ogasawara K. 2015. Emergence of H7N9 Influenza A Virus Resistant to

428

Neuraminidase Inhibitors in Nonhuman Primates. Antimicrob Agents Chemother

429

59:4962-4973.

430

431

17.

Arikata M, Itoh Y, Okamatsu M, Maeda T, Shiina T, Tanaka K, Suzuki S, Nakayama M,

Sakoda Y, Ishigaki H, Takada A, Ishida H, Soda K, Pham VL, Tsuchiya H, Nakamura S,

19

432

Torii R, Shimizu T, Inoko H, Ohkubo I, Kida H, Ogasawara K. 2012. Memory immune

433

responses against pandemic (H1N1) 2009 influenza virus induced by a whole particle

434

vaccine in cynomolgus monkeys carrying Mafa-A1*052:02. PLoS One 7:e37220.

435

18.

Pham VL, Nakayama M, Itoh Y, Ishigaki H, Kitano M, Arikata M, Ishida H, Kitagawa N,

436

Shichinohe S, Okamatsu M, Sakoda Y, Tsuchiya H, Nakamura S, Kida H, Ogasawara K.

437

2013. Pathogenicity of pandemic H1N1 influenza A virus in immunocompromised

438

cynomolgus macaques. PLoS One 8:e75910.

439

19.

Hiono T, Okamatsu M, Matsuno K, Haga A, Iwata R, Nguyen LT, Suzuki M, Kikutani Y,

440

Kida H, Onuma M, Sakoda Y. 2017. Characterization of H5N6 highly pathogenic avian

441

influenza viruses isolated from wild and captive birds in the winter season of 2016-2017

442

in Northern Japan. Microbiol Immunol 61:387-397.

443

20.

Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y,

444

Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito

445

T, Otsuki K, Ito T, Kida H. 2017. Characterization of Highly Pathogenic Avian Influenza

446

Virus A(H5N6), Japan, November 2016. Emerg Infect Dis 23:691-695.

447

21.

Choi WS, Jeong JH, Kwon JJ, Ahn SJ, Lloren KKS, Kwon HI, Chae HB, Hwang J, Kim

448

MH, Kim CJ, Webby RJ, Govorkova EA, Choi YK, Baek YH, Song MS. 2018.

449

Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza

450

Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. J Virol 92:pii: e01580-17.

451

doi: 10.1128/JVI.01580-17.

452

22.

De Jong MD, Ison MG, Monto AS, Metev H, Clark C, O'Neil B, Elder J, McCullough A,

453

Collis P, Sheridan WP. 2014. Evaluation of intravenous peramivir for treatment of

454

influenza in hospitalized patients. Clin Infect Dis 59:e172-85.

20

455

23.

456

457

Yang. Z-F, Mok. CKP, Peiris. JSM, Zhong. N-S. 2015. Human Infection with a Novel

Avian Influenza A(H5N6) Virus. N Engl J Med 373:487-489.

24.

Shieh WJ, Blau DM, Denison AM, Deleon-Carnes M, Adem P, Bhatnagar J, Sumner J,

458

Liu L, Patel M, Batten B, Greer P, Jones T, Smith C, Bartlett J, Montague J, White E,

459

Rollin D, Gao R, Seales C, Jost H, Metcalfe M, Goldsmith CS, Humphrey C, Schmitz A,

460

Drew C, Paddock C, Uyeki TM, Zaki SR. 2010. 2009 pandemic influenza A (H1N1):

461

pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol 177:166-

462

175.

463

25.

Liem NT, Nakajima N, Phat le P, Sato Y, Thach HN, Hung PV, San LT, Katano H,

464

Kumasaka T, Oka T, Kawachi S, Matsushita T, Sata T, Kudo K, Suzuki K. 2008. H5N1-

465

infected cells in lung with diffuse alveolar damage in exudative phase from a fatal case in

466

Vietnam. Jpn J Infect Dis 61:157-160.

467

26.

Feng Y, Hu L, Lu S, Chen Q, Zheng Y, Zeng D, Zhang J, Zhang A, Chen L, Hu Y,

468

Zhang Z. 2015. Molecular pathology analyses of two fatal human infections of avian

469

influenza A(H7N9) virus. J Clin Pathol 68:57-63.

470

27.

Gao R, Pan M, Li X, Zou X, Zhao X, Li T, Yang H, Zou S, Bo H, Xu J, Li S, Zhang M,

471

Li Z, Wang D, Zaki SR, Shu Y. 2016. Post-mortem findings in a patient with avian

472

influenza A (H5N6) virus infection. Clin Microbiol Infect 22:574 e1-5.

473

28.

474

475

476

Betakova T, Kostrabova A, Lachova V, Turianova L. 2017. Cytokines Induced During

Influenza Virus Infection. Curr Pharm Des 23:2616-2622.

29.

Van Reeth K. 2000. Cytokines in the pathogenesis of influenza. Vet Microbiol 74:109116.

21

477

30.

Kitano M, Itoh Y, Ishigaki H, Nakayama M, Ishida H, Pham VL, Arikata M, Shichinohe

478

S, Tsuchiya H, Kitagawa N, Kobayashi M, Yoshida R, Sato A, Le QM, Kawaoka Y,

479

Ogasawara K. 2014. Efficacy of repeated intravenous administration of peramivir against

480

highly pathogenic avian influenza A (H5N1) virus in cynomolgus macaques. Antimicrob

481

Agents Chemother 58:4795-4803.

482

31.

De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau

483

NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha do Q, Guan Y, Peiris JS, Chinh NT,

484

Hien TT, Farrar J. 2006. Fatal outcome of human influenza A (H5N1) is associated with

485

high viral load and hypercytokinemia. Nat Med 12:1203-1207.

486

32.

Szretter KJ, Gangappa S, Belser JA, Zeng H, Chen H, Matsuoka Y, Sambhara S, Swayne

487

DE, Tumpey TM, Katz JM. 2009. Early control of H5N1 influenza virus replication by

488

the type I interferon response in mice. J Virol 83:5825-5834.

489

33.

Liu Q, Ma J, Strayer DR, Mitchell WM, Carter WA, Ma W, Richt JA. 2014. Emergence

490

of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a

491

natural IFN-alpha for infection control and treatment. Expert Rev Anti Infect Ther

492

12:165-169.

493

34.

494

495

Sato M, Hashimoto K, Kawasaki Y, Hosoya M. 2018. Immune response after a single

intravenous peramivir administration in children with influenza. Antivir Ther 23:435-441.

35.

Ilyushina NA, Govorkova EA, Russell CJ, Hoffmann E, Webster RG. 2007. Contribution

496

of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. J Gen

497

Virol 88:1266-1274.

22

498

36.

Togo Y, Hornick RB, Felitti VJ, Kaufman ML, Dawkins AT, Jr., Kilpe VE, Claghorn JL.

499

1970. Evaluation of therapeutic efficacy of amantadine in patients with naturally

500

occurring A2 influenza. JAMA 211:1149-1156.

501

37.

Kandeil A, Kayed A, Moatasim Y, Webby RJ, McKenzie PP, Kayali G, Ali MA. 2017.

502

Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated

503

from wild birds in Egypt. J Gen Virol 98:1573-1586.

504

38.

Levite M. 2016. Dopamine and T cells: dopamine receptors and potent effects on T cells,

505

dopamine production in T cells, and abnormalities in the dopaminergic system in T cells

506

in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216:42-89.

507

39.

Kocks JR, Davalos-Misslitz AC, Hintzen G, Ohl L, Forster R. 2007. Regulatory T cells

508

interfere with the development of bronchus-associated lymphoid tissue. J Exp Med

509

204:723-734.

510

40.

Kitano M, Itoh Y, Kodama M, Ishigaki H, Nakayama M, Nagata T, Ishida H, Tsuchiya H,

511

Torii R, Baba K, Yoshida R, Sato A, Ogasawara K. 2010. Establishment of a cynomolgus

512

macaque model of influenza B virus infection. Virology 407:178-184.

513

41.

Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A, Van Rooijen N, Urban JF, Jr.,

514

Wynn TA, Gause WC. 2012. An essential role for TH2-type responses in limiting acute

515

tissue damage during experimental helminth infection. Nat Med 18:260-266.

516

23

517

Table 1. Virus titers in swab samples of cynomolgus macaques infected with H5N6 and

518

treated with antiviral drugs.

Virus titers (Log10TCID50/mL)

Sample a

Treatment

Animal

Days after virus inoculation

≤ 0.83

2.50

2.67

1.83

2.00

3.44

4.83

3.00

1.50

2.33

3.50

3.50

3.67

3.23

3.50

1.50

≤ 0.67

O2

3.83

≤ 0.67

2.00

≤ 1.23

O3

≤ 1.33

P1

≤ 1.33

P2

3.50

≤ 1.00

≤ 1.00

≤ 0.67

P3

4.00

< 0.67

< 1.00

S1b

Saline

S2

S3

O1

Oseltamivir

Nasal

swab

Peramivir

Amantadine

Saline

Oseltamivir

Trachea

swab

Peramivir

Amantadine

Saline

Bronchial

swab

Oseltamivir

3.50

2.67

3.83

3.23

≤ 0.67

A1

3.50

A2

≤ 1.33

A3

1.67

≤ 1.5

≤ 1.77

≤ 1.33

2.23

2.50

2.23

≤ 1.50

≤ 1.77

2.50

2.33

≤ 1.00

≤ 1.33

S1

4.67

3.33

1.67

2.00

≤ 0.67

S2

3.67

≤ 1.00

≤ 0.67

≤ 0.67

S3

2.50

2.50

≤ 0.75

1.83

≤ 0.67

≤ 0.67

≤ 1.83

≤ 0.83

2.50

≤ 1.44

<1

O1

2.67

2.83

O2

3.50

2.00

2.00

O3

4.33

3.77

2.33

P1

2.5

2.67

≤ 1.5

P2

4.00

≤ 1.00

≤ 1.44

P3

4.50

2.77

20

1.83

≤ 2.17

3.33

2.67

≤ 1.23

≤ 1.67

≤1.00

≤ 1.50

2.63

≤ 1.50

2.50

A1

5.67

A2

4.50

A3

4.67

3.50

2.33

3.50

2.23

S1

3.67

4.00

1.67

2.83

1.50

2.67

S2

5.00

3.00

≤ 1.00

≤ 1.00

1.67

≤ 1.50

S3

2.00

2.50

2.67

2.23

1.50

O1

1.83

2.50

2.00

≤ 0.67

O2

4.00

≤ 1.00

2.23

≤ 0.83

O3

3.33

2.50

≤ 1.23

≤ 0.67

24

Peramivir

Amantadine

P1

3.00

2.50

2.00

≤ 1.50

≤ 1.00

P2

4.33

3.50

≤ 0.67

P3

4.67

3.00

1.38

A1

3.67

3.00

≤ 1.00

≤ 1.00

2.23

A2

4.50

≤ 1.23

≤ 1.77

< 1.50

3.50

≤ 2.25

A3

4.00

2.33

≤ 1.33

3.23

3.00

2.25

≤ 1.00

519

520

: Sampling organs.

521

: Macaque identification.

522

<: No CPE-positive well in quadruplicate culture. A detection limit was 0.67 log10TCID50/mL.

523

≤ 0.67: One CPE-positive well in quadruplicate culture with the undiluted samples was

524

observed.

525

526

samples and one with 10-fold diluted sample.

527

≤ 1: Two CPE-positive wells in quadruplicate culture with undiluted sample were observed.

528

≤1.23: Three CPE-positive wells were observed in quadruplicate culture: two with undiluted

529

sample and one with 10-fold diluted sample.

530

≤1.33: Three CPE-positive wells in quadruplicate culture with undiluted sample were observed.

531

≤ 1.44: Four CPE-positive wells were observed in quadruplicate culture: two with undiluted

532

sample; one with 10-fold diluted sample and one with 100-fold diluted sample.

533

534

sample and two with 10-fold diluted sample.

535

536

sample; one with 10-fold diluted sample and one with 1000-fold diluted sample.

537

538

sample and two with 10-fold diluted sample.

539

540

sample; one with 10-fold diluted sample and two with 100-fold diluted sample.

541

542

sample; three with 10-fold diluted sample.

543

544

≤ 0.83: Two CPE-positive wells were observed in quadruplicate culture: one with undiluted

≤ 1.5: Four CPE-positive wells were observed in quadruplicate culture: two with undiluted

≤ 1.67: Five CPE-positive wells were observed in quadruplicate culture: three with undiluted

≤ 1.77: Five CPE-positive wells were observed in quadruplicate culture: three with undiluted

≤ 1.83: Six CPE-positive wells were observed in quadruplicate culture: three with undiluted

≤ 2.17: Six CPE-positive wells were observed in quadruplicate culture: three with undiluted

≤ 2.25: Seven CPE-positive wells were observed in quadruplicate culture: three with undiluted

sample; two with 10-fold diluted sample and two with 100-fold diluted sample.

25

545

Figure legends

546

Fig 1. Symptoms of cynomolgus macaques challenged with A/black swan/Akita/1/2016

547

(H5N6).

548

Cynomolgus macaques (n = 3) were inoculated with the virus on day 0. (a) Averages and

549

standard deviations of body temperature and (b) heart rate were determined by using a telemetry

550

probe system during the night (from 8:00 p.m. to 8:00 a.m.) and data were adjusted to day -1. (c,

551

d) Averages and standard deviations of food consumption and body weight are shown. (c) Food

552

consumption was estimated by the following formation: food consumption = [(number of pellets

553

given in the morning - number of pellets left at night)/number of pellets given in the morning] ×

554

100 (%). (d) Body weight was monitored every day. Statistical differences among groups are

555

calculated with an ANOVA multi-comparison test.

556

557

Fig

558

swan/Akita/1/2016 (H5N6).

559

H&E staining of lung tissues collected 7 days after virus infection. Representative photos of

560

cynomolgus macaques treated with saline (a), oseltamivir (b), peramivir (c) and amantadine (d).

561

Black arrow heads point neutrophils. Bars, 50 μm.

2.

Viral

pneumonia

in

cynomolgus

macaques

challenged

with

A/black

562

563

Fig 3. Peripheral blood cell populations and cytokine/chemokine responses in cynomolgus

564

macaques challenged with A/black swan/Akita/1/2016 (H5N6).

565

(a-d) Concentrations in peripheral blood cells collected on the indicated days: (a) total leukocytes,

566

(b) granulocytes, (c) monocytes, and (d) lymphocytes. (e-h) Levels of cytokines/chemokines in

567

plasma after virus infection. The average values and standard deviations were shown.

26

568

569

Fig 4. Efficacy of antiviral drugs against A/black swan/Akita/1/2016 (H5N6) virus in vitro.

570

MDCK cells were infected with the virus at a multiplicity of infection (MOI) of 0.01 and

571

cultured with antiviral drugs of various concentrations: (a) oseltamivir, (b, d) peramivir, and (c)

572

amantadine. Sensitivity of the inoculum virus (a-c) and the virus recovered from a tonsil of

573

macaque P2 on day 7 (d) was examined. The supernatant of each well was collected at 24 h and

574

48 h after virus infection. Then virus titers in the supernatants were determined by the Reed

575

Muench method. Averages and standard deviations of three independent experiments were

576

shown in a-c. Averages and standard deviations of triplicate culture were shown in d. EC50

577

values were calculated by "Quest Graph™ EC50 Calculator." AAT Bioquest, Inc, 03 Feb. 2020,

578

https://www.aatbio.com/tools/ec50-calculator. The asterisks show significant differences in virus

579

titers with treatment at each antiviral drug concentration and without treatment (0 μg/mL)

580

(Student’s t-test, *: P < 0.05, **:P<0.01).

27

...

参考文献をもっと見る