リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Host metabolic benefits of prebiotic exopolysaccharides produced by Leuconostoc mesenteroides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Host metabolic benefits of prebiotic exopolysaccharides produced by Leuconostoc mesenteroides

Miyamoto, Junki Shimizu, Hidenori Hisa, Keiko Matsuzaki, Chiaki Inuki, Shinsuke Ando, Yuna Nishida, Akari Izumi, Ayano Yamano, Mayu Ushiroda, Chihiro Irie, Junichiro Katayama, Takane Ohno, Hiroaki Itoh, Hiroshi Yamamoto, Kenji Kimura, Ikuo 京都大学 DOI:10.1080/19490976.2022.2161271

2023

概要

Fermented foods demonstrate remarkable health benefits owing to probiotic bacteria or microproducts produced via bacterial fermentation. Fermented foods are produced by the fermentative action of several lactic acid bacteria, including Leuconostoc mesenteroides; however, the exact mechanism of action of these foods remains unclear. Here, we observed that prebiotics associated with L. mesenteroides-produced exopolysaccharides (EPS) demonstrate substantial host metabolic benefits. L. mesenteroides-produced EPS is an indigestible α-glucan, and intake of the purified form of EPS improved glucose metabolism and energy homeostasis through EPS-derived gut microbial short-chain fatty acids, and changed gut microbial composition. Our findings reveal an important mechanism that accounts for the effects of diet, prebiotics, and probiotics on energy homeostasis and suggests an approach for preventing lifestyle-related diseases by targeting bacterial EPS.

この論文で使われている画像

参考文献

1. Kok CR, Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr Rev. 2018;76(Suppl 1):4–15. doi:10.1093/nutrit/nuy056.

2. Simpson HL, Campbell BJ. Review article: dietary fibre– microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–179. doi:10.1111/apt.13248.

3. van Hylckama Vlieg JE, Veiga P, Zhang C, Derrien M, Zhao L. Impact of microbial transformation of food on health - from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol. 2011;22 (2):211–219. doi:10.1016/j.copbio.2010.12.004.

4. Chen C, Chen L, Lin L, Jin D, Du Y, Lyu J. Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl Microbiol Biotechnol. 2021;105(11):4415–4425. doi:10.1007/s00253-021-11358-z.

5. Chun BH, Kim KH, Jeon HH, Lee SH, Jeon CO. Pangenomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Sci Rep. 2017;7(1):11504. doi:10.1038/s41598-017- 12016-z.

6. Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, Zendo T, Sonomoto K. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol. 2011;77(22):8164–8170. doi:10. 1128/AEM.06348-11.

7. Santos M, Teixeira J, Rodrigues A. Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J. 2000;4(3):177–188. doi:10.1016/S1369-703X(99) 00047-9.

8. Yan M, Han J, Xu X, Liu L, Gao C, Zheng H, Chen Y, Tao Y, Zhou H, Li Y, et al. Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress. Sci Rep. 2016;6(1):38122. doi:10.1038/srep38122.

9. Dols M, Chraibi W, Remaud-Simeon M, Lindley ND, Monsan PF. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl Environ Microbiol. 1997;63 (6):2159–2165. doi:10.1128/aem.63.6.2159-2165.1997.

10. Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015;6(3):679–693. doi:10. 1039/C4FO00529E.

11. Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13 (1):1–24. doi:10.1080/19490976.2021.1897212.

12. Dalile B, van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–478. doi:10.1038/s41575-019-0157-3.

13. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345. doi:10.1016/j.cell.2016.05. 041.

14. Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144–151. doi:10.1016/j.pharmthera.2016.04. 007.

15. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. doi:10.4161/ gmic.19897.

16. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100(1):171–210. doi:10.1152/physrev.00041.2018.

17. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108(19):8030–8035. doi:10.1073/pnas.1016088108.

18. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4(1):1829. doi:10.1038/ ncomms2852.

19. Matsuzaki C, Kamishima K, Matsumoto K, Koga H, Katayama T, Yamamoto K, Hisa K. Immunomodulating activity of exopolysaccharide-producing Leuconostoc mesenteroides strain NTM048 from green peas. J Appl Microbiol. 2014;116(4):980–989. doi:10.1111/jam. 12411.

20. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.

21. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11(1):119. doi:10.1186/1471-2105-11- 119.

22. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldón T, Rattei T, Creevey C, Kuhn M, et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42(Database issue):D231–D239. doi:10.1093/nar/ gkt1253.

23. Miyamoto J, Ohue-Kitano R, Mukouyama H, Nishida A, Watanabe K, Igarashi M, Irie J, Tsujimoto G, Satoh-Asahara N, Itoh H, et al. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proc Natl Acad Sci U S A. 2019;116(47):23813–23821. doi:10.1073/pnas. 1912573116.

24. Kimura I, Miyamoto J, Ohue-Kitano R, Watanabe K, Yamada T, Onuki M, Aoki R, Isobe Y, Kashihara D, Inoue D, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science. 2020;367(6481):eaaw8429. doi:10.1126/ science.aaw8429.

25. Nishida A, Miyamoto J, Shimizu H, Kimura I. Gut microbial short-chain fatty acids-mediated olfactory receptor 78 stimulation promotes anorexigenic gut hormone peptide YY secretion in mice. Biochem Biophys Res Commun. 2021;557:48–54. doi:10.1016/j.bbrc.2021. 03.167.

26. Arora T, Rudenko O, Egerod KL, Husted AS, Kovatcheva-Datchary P, Akrami R, Kristensen M, Schwartz TW, Bäckhed F. Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity. Am J Physiol Endocrinol Metab. 2019;316(3):E453–E463. doi:10. 1152/ajpendo.00391.2018.

27. Miyamoto J, Igarashi M, Watanabe K, Karaki S-I, Mukouyama H, Kishino S, Li X, Ichimura A, Irie J, Sugimoto Y, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10(1):4007. doi:10.1038/s41467-019-11978-0.

28. Shen J, Jin G, Zhang Z, Zhang J, Sun Y, Xie X, Ma T, Zhu Y, Du Y, Niu Y, et al. A multiple-dimension model for microbiota of patients with colorectal cancer from normal participants and other intestinal disorders. Appl Microbiol Biotechnol. 2022;106(5–6):2161–2173. doi:10.1007/s00253-022-11846-w.

29. Miyamoto J, Watanabe K, Taira S, Kasubuchi M, Li X, Irie J, Itoh H, Kimura I. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One. 2018;13(4):e0196579. doi:10.1371/ journal.pone.0196579.

30. Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, Couzens M, Slack K, Dallmann R, Sainsbury A, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49 (6):1360–1370. doi:10.1007/s00125-006-0237-0.

31. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem. 2009;57(22):10889–10897. doi:10.1021/jf902068t.

32. Hirano R, Sakanaka M, Yoshimi K, Sugimoto N, Eguchi S, Yamauchi Y, Nara M, Maeda S, Ami Y, Gotoh A, et al. Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile. Gut Microbes. 2021;13 (1):1973835. doi:10.1080/19490976.2021.1973835.

33. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–715. doi:10. 1016/j.chom.2018.05.012.

34. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 2015;6(1):7481. doi:10.1038/ncomms8481.

35. Hagi T, Belzer C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl Microbiol Biotechnol. 2021;105(12):4833–4841. doi:10.1007/s00253-021-11362-3.

36. Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, de Palencia PF, Dueñas MT, Aznar R, López P, Prieto A. Comparative analysis of production and purification of homo- and hetero- polysaccharides produced by lactic acid bacteria. Carbohydr Polym. 2013;93(1):57–64. doi:10.1016/j.carbpol.2012.05.016.

37. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. Structure-function relationships of glucansucrase and fructansucrase Enzymes from Lactic Acid Bacteria. Microbiol Mol Biol Rev. 2006;70 (1):157–176. doi:10.1128/MMBR.70.1.157-176.2006.

38. Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev. 2017;41(Supp_1): S168–S200.0. doi:10.1093/femsre/fux017.

39. Ma’unatin A, Harijono H, Zubaidah E, Rifa'i M. The isolation of exopolysaccharide-producing lactic acid bacteria from lontar (Borassus flabellifer L.) sap. Iran J Microbiol. 2020;12(5):437–444. doi:10.18502/ijm. v12i5.4605.

40. Rühmann B, Schmid J, Sieber V. Methods to identify the unexplored diversity of microbial exopolysaccharides. Front Microbiol. 2015;6:565. doi:10.3389/fmicb.2015.00565.

41. Poli A, Anzelmo G, Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs. 2010;8(6):1779–1802. doi:10.3390/md8061779.

42. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–450. doi:10.1038/nature12721.

43. Salazar N, Neyrinck AM, Bindels LB, Druart C, RuasMadiedo P, Cani PD, de Los Reyes-Gavilán CG, Delzenne NM. Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front Microbiol. 2019;10:1809. doi:10.3389/fmicb.2019. 01809.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る