リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「miR-142 induces accumulation of reactive oxygen species (ROS) by inhibiting pexophagy in aged bone marrow mesenchymal stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

miR-142 induces accumulation of reactive oxygen species (ROS) by inhibiting pexophagy in aged bone marrow mesenchymal stem cells

法里 慧 近畿大学

2023.01.12

概要

Elevation of the levels of reactive oxygen species (ROS) is a major tissue-degenerative phenomenon involved in aging and aging-related diseases. The detailed mechanisms underlying aging-related ROS generation remain unclear. Presently, the expression of microRNA (miR)-142-5p was signifcantly upregulated in bone marrow mesenchymal stem cells (BMMSCs) of aged mice. Overexpression of miR-142 and subsequent observation revealed that miR-142 involved ROS accumulation through the disruption of selective autophagy for peroxisomes (pexophagy). Mechanistically, attenuation of acetyltransferase Ep300 triggered the upregulation of miR-142 in aged BMMSCs, and miR-142 targeted endothelial PAS domain protein 1 (Epas1) was identifed as a regulatory protein of pexophagy. These fndings support a novel molecular mechanism relating aging-associated ROS generation and organelle degradation in BMMSCs, and suggest a potential therapeutic target for aging-associated disorders that are accompanied by stem cell degeneration.

参考文献

1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Te hallmarks of aging. Cell 153, 1194–1217, https://doi. org/10.1016/j.cell.2013.05.039 (2013).

2. Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506, https://doi. org/10.1038/ncb2879 (2013).

3. Stadtman, E. R. Protein oxidation and aging. Sci. 257, 1220–1224 (1992).

4. Cui, H., Kong, Y. & Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal. Transduct. 2012, 646354, https://doi. org/10.1155/2012/646354 (2012).

5. Wickens, A. P. Ageing and the free radical theory. Respir. Physiol. 128, 379–391 (2001).

6. van Deursen, J. M. Te role of senescent cells in ageing. Nat. 509, 439–446, https://doi.org/10.1038/nature13193 (2014).

7. D’Aquila, P., Bellizzi, D. & Passarino, G. Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 16, 569–585, https://doi.org/10.1007/s10522-015-9562-3 (2015).

8. Afanas’ev, I. New nucleophilic mechanisms of ros-dependent epigenetic modifcations: comparison of aging and cancer. Aging Dis. 5, 52–62, https://doi.org/10.14336/AD.2014.050052 (2014).

9. Ahmed, E. K., Rogowska-Wrzesinska, A., Roepstorf, P., Bulteau, A. L. & Friguet, B. Protein modifcation and replicative senescence of WI-38 human embryonic fbroblasts. Aging Cell 9, 252–272, https://doi.org/10.1111/j.1474-9726.2010.00555.x (2010).

10. Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell Physiol. 227, 421–430, https://doi.org/10.1002/jcp.22764 (2012).

11. Shyh-Chang, N., Daley, G. Q. & Cantley, L. C. Stem cell metabolism in tissue development and aging. Dev. 140, 2535–2547, https:// doi.org/10.1242/dev.091777 (2013).

12. Moldovan, L. & Moldovan, N. I. Oxygen free radicals and redox biology of organelles. Histochem. Cell Biol. 122, 395–412, https:// doi.org/10.1007/s00418-004-0676-y (2004).

13. Deb, R. & Nagotu, S. Versatility of peroxisomes: An evolving concept. Tissue Cell 49, 209–226, https://doi.org/10.1016/j. tice.2017.03.002 (2017).

14. Cho, D. H., Kim, Y. S., Jo, D. S., Choe, S. K. & Jo, E. K. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Mol. Cell 41, 55–64, https://doi.org/10.14348/molcells.2018.2245 (2018).

15. Kumar, S., Kawalek, A. & van der Klei, I. J. Peroxisomal quality control mechanisms. Curr. Opin. Microbiol. 22, 30–37, https://doi. org/10.1016/j.mib.2014.09.009 (2014).

16. Heiland, I. & Erdmann, R. Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. FEBS J. 272, 2362–2372, https://doi.org/10.1111/j.1742-4658.2005.04690.x (2005).

17. Terman, A. & Brunk, U. T. Myocyte aging and mitochondrial turnover. Exp. Gerontol. 39, 701–705, https://doi.org/10.1016/j. exger.2004.01.005 (2004).

18. Martinez-Lopez, N., Athonvarangkul, D. & Singh, R. Autophagy and aging. Adv. Exp. Med. Biol. 847, 73–87, https://doi. org/10.1007/978-1-4939-2404-2_3 (2015).

19. Cuervo, A. M. & Macian, F. Autophagy and the immune function in aging. Curr. Opin. Immunol. 29, 97–104, https://doi. org/10.1016/j.coi.2014.05.006 (2014).

20. Legakis, J. E. et al. Peroxisome senescence in human fbroblasts. Mol. Biol. Cell 13, 4243–4255, https://doi.org/10.1091/mbc.e02-06- 0322 (2002).

21. Perichon, R., Bourre, J. M., Kelly, J. F. & Roth, G. S. Te role of peroxisomes in aging. Cell Mol. Life Sci. 54, 641–652, https://doi. org/10.1007/s000180050192 (1998).

22. Escobar, K. A., Cole, N. H., Mermier, C. M. & VanDusseldorp, T. A. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell, e12876, https://doi.org/10.1111/acel.12876 (2018).

23. Xu, J., Wang, Y., Tan, X. & Jing, H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8, 873–882, https://doi.org/10.4161/auto.19629 (2012).

24. Harries, L. W. MicroRNAs as Mediators of the Ageing Process. Genes. 5, 656–670, https://doi.org/10.3390/genes5030656 (2014).

25. Deshpande, S. et al. Reduced Autophagy by a microRNA-mediated Signaling Cascade in Diabetes-induced Renal Glomerular Hypertrophy. Sci. Rep. 8, 6954, https://doi.org/10.1038/s41598-018-25295-x (2018).

26. Onodera, Y. et al. miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells. Aging Cell 16, 1369–1380, https://doi.org/10.1111/acel.12680 (2017).

27. Mizuno, Y. et al. miR-125b inhibits osteoblastic diferentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun. 368, 267–272, https://doi.org/10.1016/j.bbrc.2008.01.073 (2008).

28. Huang, J., Zhao, L., Xing, L. & Chen, D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell diferentiation. Stem Cell 28, 357–364, https://doi.org/10.1002/stem.288 (2010).

29. Chen, T. S. et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38, 215–224, https:// doi.org/10.1093/nar/gkp857 (2010).

30. Oruqaj, G. et al. Compromised peroxisomes in idiopathic pulmonary fbrosis, a vicious cycle inducing a higher fbrotic response via TGF-beta signaling. Proc. Natl Acad. Sci. USA 112, E2048–2057, https://doi.org/10.1073/pnas.1415111112 (2015).

31. Chino, H., Hatta, T., Natsume, T. & Mizushima, N. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol. Cell 74, 909–921 e906, https://doi.org/10.1016/j.molcel.2019.03.033 (2019).

32. Wong, N. & Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–152, https://doi.org/10.1093/nar/gku1104 (2015).

33. Vergoulis, T. et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 40, D222–229, https://doi.org/10.1093/nar/gkr1161 (2012).

34. Walter, K. M. et al. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab. 20, 882–897, https://doi.org/10.1016/j.cmet.2014.09.017 (2014).

35. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Diferential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361–9374 (2003).

36. Sharma, S. et al. Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol. Med. 4, 617–632, https://doi.org/10.1002/emmm.201200234 (2012).

37. Li, Q., Xiao, H. & Isobe, K. Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J. Gerontol. A Biol. Sci. Med. Sci 57, B93–98 (2002).

38. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451, https://doi.org/10.1038/nm1388 (2006).

39. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nat. 431, 997–1002, https://doi.org/10.1038/nature02989 (2004).

40. Lin, C. H., Li, N. T., Cheng, H. S. & Yen, M. L. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J. Cell Mol. Med. 22, 786–796, https://doi.org/10.1111/jcmm.13356 (2018).

41. Denu, R. A. & Hematti, P. Efects of Oxidative Stress on Mesenchymal Stem Cell Biology. Oxid. Med. Cell Longev. 2016, 2989076, https://doi.org/10.1155/2016/2989076 (2016).

42. Rodrigues, M., Turner, O., Stolz, D., Grifth, L. G. & Wells, A. Production of reactive oxygen species by multipotent stromal cells/ mesenchymal stem cells upon exposure to fas ligand. Cell Transpl. 21, 2171–2187, https://doi.org/10.3727/096368912X639035 (2012).

43. Park, S., Kang, S., Min, K. H., Woo Hwang, K. & Min, H. Age-associated changes in microRNA expression in bone marrow derived dendritic cells. Immunol. Invest. 42, 179–190, https://doi.org/10.3109/08820139.2012.717328 (2013).

44. Zhang, H. et al. Investigation of microRNA expression in human serum during the aging process. J. Gerontol. A Biol. Sci. Med. Sci 70, 102–109, https://doi.org/10.1093/gerona/glu145 (2015).

45. Fenn, A. M. et al. Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol. Aging 34, 2748–2758, https://doi.org/10.1016/j.neurobiolaging.2013.06.007 (2013).

46. Boon, R. A. et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ. Res. 109, 1115–1119, https://doi. org/10.1161/CIRCRESAHA.111.255737 (2011).

47. Xue, T. et al. miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1alpha signaling: Implications for age-related hearing loss. Int. J. Mol. Med. 38, 1387–1394, https://doi.org/10.3892/ijmm.2016.2735 (2016).

48. Chan, S. Y. et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10, 273–284, https://doi.org/10.1016/j.cmet.2009.08.015 (2009).

49. Chen, Z., Li, Y., Zhang, H., Huang, P. & Luthra, R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29, 4362–4368, https://doi.org/10.1038/onc.2010.193 (2010).

50. Wang, N. et al. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway. Biomed. Pharmacother. 89, 1187–1195, https://doi.org/10.1016/j. biopha.2017.03.011 (2017).

51. Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fbronectin production in diabetic nephropathy. FASEB J. 22, 4126–4135, https://doi.org/10.1096/f.08-112326 (2008).

52. Carlomosti, F. et al. Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS. Antioxid. Redox Signal. 27, 328–344, https://doi.org/10.1089/ars.2016.6643 (2017).

53. Anding, A. L. & Baehrecke, E. H. Cleaning House: Selective Autophagy of Organelles. Dev. Cell 41, 10–22, https://doi.org/10.1016/j. devcel.2017.02.016 (2017).

54. Feher, J. et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging 27, 983–993, https://doi.org/10.1016/j.neurobiolaging.2005.05.012 (2006).

55. Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952, https://doi.org/10.1242/jcs.114819 (2013).

56. De Duve, C. & Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357, https://doi.org/10.1152/ physrev.1966.46.2.323 (1966).

57. Liu, L. F., Shen, W. J., Ueno, M., Patel, S. & Kraemer, F. B. Characterization of age-related gene expression profling in bone marrow and epididymal adipocytes. BMC Genomics 12, 212, https://doi.org/10.1186/1471-2164-12-212 (2011).

58. Bandyopadhyay, D. et al. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 62, 6231–6239 (2002).

59. Yan, G. et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J. Invest. Dermatol. 133, 2444–2452, https://doi.org/10.1038/jid.2013.187 (2013).

60. Song, J. & Kim, Y. K. Identifcation of the Role of miR-142-5p in Alzheimer’s Disease by Comparative Bioinformatics and Cellular Analysis. Front. Mol. Neurosci. 10, 227, https://doi.org/10.3389/fnmol.2017.00227 (2017).

61. Talebi, F. et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J. Neuroinfammation 14, 55, https://doi.org/10.1186/s12974-017-0832-7 (2017).

62. Teng, Z. et al. miR-142-5p in Bone Marrow-Derived Mesenchymal Stem Cells Promotes Osteoporosis Involving Targeting Adhesion Molecule VCAM-1 and Inhibiting Cell Migration. Biomed. Res. Int. 2018, 3274641, https://doi.org/10.1155/2018/3274641 (2018).

63. Sun, Z., Chin, Y. E. & Zhang, D. D. Acetylation of Nrf2 by p300/CBP augments promoter-specifc DNA binding of Nrf2 during the antioxidant response. Mol. Cell Biol. 29, 2658–2672, https://doi.org/10.1128/MCB.01639-08 (2009).

64. Bertout, J. A., Patel, S. A. & Simon, M. C. Te impact of O2 availability on human cancer. Nat. Rev. Cancer 8, 967–975, https://doi. org/10.1038/nrc2540 (2008).

65. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309, https://doi.org/10.1016/j.molcel.2010.09.022 (2010).

66. Su, S. et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profbrogenic macrophage program. Nat. Commun. 6, 8523, https://doi.org/10.1038/ncomms9523 (2015).

67. Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359, https://doi.org/10.1038/ cr.2008.24 (2008).

68. Cheng, Y. & Zhang, C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res. 3, 251–255, https://doi.org/10.1007/ s12265-010-9169-7 (2010).

69. Chapnik, E. et al. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. Elife 3, e01964, https:// doi.org/10.7554/eLife.01964 (2014).

70. Shrestha, A. et al. Generation and Validation of miR-142 Knock Out Mice. PLoS One 10, e0136913, https://doi.org/10.1371/journal. pone.0136913 (2015).

71. Zhu, H. et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat. Protoc. 5, 550–560, https://doi.org/10.1038/nprot.2009.238 (2010).

72. Wiemer, E. A., Wenzel, T., Deerinck, T. J., Ellisman, M. H. & Subramani, S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J. Cell Biol. 136, 71–80, https://doi.org/10.1083/jcb.136.1.71 (1997).

73. Edwards, S. R. & Wandless, T. J. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J. Biol. Chem. 282, 13395–13401, https://doi.org/10.1074/jbc.M700498200 (2007).

参考文献をもっと見る