リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「胎仔ライディッヒ前駆細胞の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

胎仔ライディッヒ前駆細胞の解析

井上, 実紀 INOUE, Miki イノウエ, ミキ 九州大学

2020.03.23

概要

Fetal Leydig cells (FLCs) appear in the interstitial space of fetal testes, and play pivotal roles for masculinization of fetuses through testosterone synthesis. Over the past two decades, the molecular mechanisms of FLC differentiation have been studied primarily with genetically modified animals. As the consequence, many transcription factors and growth factors implicated in FLC differentiation have been identified. However, to comprehend the mechanisms for FLC differentiation, functional correlation among the factors identified by those studies remains to be investigated. To investigate it, identification of progenitor cells for FLCs were essential. EGFP transgenic mice previously established in our laboratory provided us with two cell populations, one of which was strongly EGFP-labeled FLCs (S-EGFP cells) and the other was weakly EGFP-labeled interstitial cells (W-EGFP cells). By in vitro testis reconstruction studies using these EGFP-labeled cell populations, I showed for the first time that the interstitial W-EGFP cells differentiated to S-EGFP (FLCs), indicating that the progenitor cells for FLCs are included in the W-EGFP cell population. Comparison of the transcriptomes of the purified FLCs (S-EGFP cells) and the W-EGFP cells including the progenitors reveled expectedly an elevated expression of the steroidogenic genes in the former cells. Interestingly, the genes involved in other metabolic pathways such as energy production (glycolysis, TCA cycle, and oxidative phosphorylation) and syntheses for lipid and cholesterol were found to be activated in FLCs. Indeed, elevated oxygen consumption and ATP production were observed in FLCs. Investigation of W-EGFP progenitors by single cell transcriptome analyses revealed the presence of a unique fraction of cells, which were as if differentiating into FLCs. A few genes such as Thymosin ◻10 (Tmsb10) were identified as a transiently expressed gene in the cell population. As for metabolic genes, several glycolytic gene expressions were elevated in these particular cells. A nuclear receptor, Ad4BP/SF-1, has been known to be critical for FLC differentiation, and thus the expression is elevated in FLCs. Investigation of an FLC-specific enhancer of Ad4BP/SF-1 gene demonstrated that GLI transcription factors activate the gene expression at the downstream of hedgehog (HH) signaling. Functional investigation with in vitro testis reconstruction demonstrated that Tmsb10 potentially regulates FLC differentiation possibly through modulating HH signaling. Although additional studies are required to comprehend how Tmsb10 modulates the HH signaling, the present study advances our understanding of the molecular mechanisms underlying HH dependent FLC differentiation.

この論文で使われている画像

参考文献

Albrecht, K.H., and Eicher, E.M. (2001). Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Developmental biology 240, 92-107.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England) 31, 166-169.

Baba, T., Otake, H., Inoue, M., Sato, T., Ishihara, Y., Moon, J.-Y., Tsuchiya, M., Miyabayashi, K., Ogawa, H., Shima, Y., et al. (2018). Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids. Communications Biology 1, 18.

Baba, T., Otake, H., Sato, T., Miyabayashi, K., Shishido, Y., Wang, C.Y., Shima, Y., Kimura, H., Yagi, M., Ishihara, Y., et al. (2014). Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nature communications 5, 3634.

Bangs, F., and Anderson, K.V. (2017). Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harbor perspectives in biology 9.

Barsoum, I., and Yao, H.H. (2011). Redundant and differential roles of transcription factors Gli1 and Gli2 in the development of mouse fetal Leydig cells. Biology of reproduction 84, 894-899.

Barsoum, I.B., Bingham, N.C., Parker, K.L., Jorgensen, J.S., and Yao, H.H.C. (2009). Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Developmental biology 329, 96-103.

Barsoum, I.B., Kaur, J., Ge, R.S., Cooke, P.S., and Yao, H.H. (2013). Dynamic changes in fetal Leydig cell populations influence adult Leydig cell populations in mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27, 2657-2666.

Bielinska, M., Seehra, A., Toppari, J., Heikinheimo, M., and Wilson, D.B. (2007). GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Developmental dynamics : an official publication of the American Association of Anatomists 236, 203-213.

Birk, O.S., Casiano, D.E., Wassif, C.A., Cogliati, T., Zhao, L., Zhao, Y., Grinberg, A., Huang, S., Kreidberg, J.A., Parker, K.L., et al. (2000). The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909-913.

Brennan, J., and Capel, B. (2004). One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nature reviews Genetics 5, 509-521.

Brennan, J., Tilmann, C., and Capel, B. (2003). Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes & development 17, 800-810.

Briscoe, J., and Therond, P.P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nature reviews Molecular cell biology 14, 416-429.

Buaas, F.W., Gardiner, J.R., Clayton, S., Val, P., and Swain, A. (2012). In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland. Development 139, 4561-4570.

Charest-Marcotte, A., Dufour, C.R., Wilson, B.J., Tremblay, A.M., Eichner, L.J., Arlow, D.H., Mootha, V.K., and Giguere, V. (2010). The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes & development 24, 537-542.

Chaveroux, C., Eichner, L.J., Dufour, C.R., Shatnawi, A., Khoutorsky, A., Bourque, G., Sonenberg, N., and Giguere, V. (2013). Molecular and genetic crosstalks between mTOR and ERRalpha are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell metabolism 17, 586-598.

Colvin, J.S., Green, R.P., Schmahl, J., Capel, B., and Ornitz, D.M. (2001). Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875-889.

Consortium., S.M.-I. (2014). A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nature biotechnology 32, 903-914.

Corbit, K.C., Aanstad, P., Singla, V., Norman, A.R., Stainier, D.Y., and Reiter, J.F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021.

Cui, S., Ross, A., Stallings, N., Parker, K.L., Capel, B., and Quaggin, S.E. (2004). Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131, 4095-4105.

DeFalco, T., Bhattacharya, I., Williams, A.V., Sams, D.M., and Capel, B. (2014). Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 111, E2384-2393.

Defalco, T., Saraswathula, A., Briot, A., Iruela-Arispe, M.L., and Capel, B. (2013). Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biology of reproduction 88, 91.

DeFalco, T., Takahashi, S., and Capel, B. (2011). Two distinct origins for Leydig cell progenitors in the fetal testis. Developmental biology 352, 14-26.

Di Magno, L., Manzi, D., D'Amico, D., Coni, S., Macone, A., Infante, P., Di Marcotullio, L., De Smaele, E., Ferretti, E., Screpanti, I., et al. (2014). Druggable glycolytic requirement for Hedgehog-dependent neuronal and medulloblastoma growth. Cell cycle (Georgetown, Tex) 13, 3404-3413.

Drummond, M.L., Li, M., Tarapore, E., Nguyen, T.T.L., Barouni, B.J., Cruz, S., Tan, K.C., Oro, A.E., and Atwood, S.X. (2018). Actin polymerization controls cilia-mediated signaling. The Journal of cell biology 217, 3255-3266.

Ezratty, E.J., Stokes, N., Chai, S., Shah, A.S., Williams, S.E., and Fuchs, E. (2011). A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129-1141.

Fischer, A., and Gessler, M. (2007). Delta-Notch--and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic acids research 35, 4583-4596.

Ge, R.S., Dong, Q., Sottas, C.M., Papadopoulos, V., Zirkin, B.R., and Hardy, M.P. (2006). In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proceedings of the National Academy of Sciences of the United States of America 103, 2719-2724.

Ge, X., Lyu, P., Gu, Y., Li, L., Li, J., Wang, Y., Zhang, L., Fu, C., and Cao, Z. (2015). Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation. Biochemical and biophysical research communications 464, 862-868.

Goldstein, A.L. (2007). History of the discovery of the thymosins. Annals of the New York Academy of Sciences 1112, 1-13.

Grisanti, L., Revenkova, E., Gordon, R.E., and Iomini, C. (2016). Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 143, 2160-2171.

Griswold, S.L., and Behringer, R.R. (2009). Fetal Leydig cell origin and development. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation 3, 1-15.

Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245-250.

Hammes, A., Guo, J.K., Lutsch, G., Leheste, J.R., Landrock, D., Ziegler, U., Gubler, M.C., and Schedl, A. (2001). Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319-329.

Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., Gennert, D., Li, S., Livak, K.J., Rozenblatt-Rosen, O., et al. (2016). CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome biology 17, 77.

Hatano, O., Takayama, K., Imai, T., Waterman, M.R., Takakusu, A., Omura, T., and Morohashi, K. (1994). Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120, 2787-2797.

Hawkins, J.R., Taylor, A., Berta, P., Levilliers, J., Van der Auwera, B., and Goodfellow, P.N. (1992). Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Human genetics 88, 471-474.

Haycraft, C.J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E.J., and Yoder, B.K. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS genetics 1, e53.

Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K., Wilhelm, D., Koopman, P., and Kanai, Y. (2009). A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129-138.

Honda, S., Morohashi, K., Nomura, M., Takeya, H., Kitajima, M., and Omura, T. (1993). Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. The Journal of biological chemistry 268, 7494-7502.

Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander, L., and Anderson, K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83-87.

Hui, C.C., and Angers, S. (2011). Gli proteins in development and disease. Annual review of cell and developmental biology 27, 513-537.

Jameson, S.A., Natarajan, A., Cool, J., DeFalco, T., Maatouk, D.M., Mork, L., Munger, S.C., and Capel, B. (2012). Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS genetics 8, e1002575.

Jiang, J., and Hui, C.C. (2008). Hedgehog signaling in development and cancer. Developmental cell 15, 801-812.

Jiang, M.H., Cai, B., Tuo, Y., Wang, J., Zang, Z.J., Tu, X., Gao, Y., Su, Z., Li, W., Li, G., et al. (2014). Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell research 24, 1466-1485.

Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in bioinformatics 9, 286-298.

Katoh-Fukui, Y., Tsuchiya, R., Shiroishi, T., Nakahara, Y., Hashimoto, N., Noguchi, K., and Higashinakagawa, T. (1998). Male-to-female sex reversal in M33 mutant mice. Nature 393, 688-692.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome research 12, 996-1006.

Kerr, J.B., Donachie, K., and Rommerts, F.F. (1985). Selective destruction and regeneration of rat Leydig cells in vivo. A new method for the study of seminiferous tubular-interstitial tissue interaction. Cell and tissue research 242, 145-156.

Kerr, J.B., and Knell, C.M. (1988). The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103, 535-544.

Kidokoro, T., Matoba, S., Hiramatsu, R., Fujisawa, M., Kanai-Azuma, M., Taya, C., Kurohmaru, M., Kawakami, H., Hayashi, Y., Kanai, Y., et al. (2005). Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Developmental biology 278, 511-525.

Kilcoyne, K.R., Smith, L.B., Atanassova, N., Macpherson, S., McKinnell, C., van den Driesche, S., Jobling, M.S., Chambers, T.J., De Gendt, K., Verhoeven, G., et al. (2014). Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 111, E1924-1932.

Kim, Y., Kobayashi, A., Sekido, R., DiNapoli, L., Brennan, J., Chaboissier, M.C., Poulat, F., Behringer, R.R., Lovell-Badge, R., and Capel, B. (2006). Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS biology 4, e187.

Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y., Kamiirisa, K., et al. (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature genetics 32, 359-369.

Kong, J.H., Siebold, C., and Rohatgi, R. (2019). Biochemical mechanisms of vertebrate hedgehog signaling. Development 146.

Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121.

Lala, D.S., Rice, D.A., and Parker, K.L. (1992). Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Molecular endocrinology 6, 1249-1258.

Landor, S.K., Mutvei, A.P., Mamaeva, V., Jin, S., Busk, M., Borra, R., Gronroos, T.J., Kronqvist, P., Lendahl, U., and Sahlgren, C.M. (2011). Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America 108, 18814-18819.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods 9, 357-359.

Lauth, M., Bergstrom, A., Shimokawa, T., Tostar, U., Jin, Q., Fendrich, V., Guerra, C., Barbacid, M., and Toftgard, R. (2010). DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nature structural & molecular biology 17, 718-725.

Lee, R.T., Zhao, Z., and Ingham, P.W. (2016). Hedgehog signalling. Development 143, 367-372.

Lee, S.H., Son, M.J., Oh, S.H., Rho, S.B., Park, K., Kim, Y.J., Park, M.S., and Lee, J.H. (2005). Thymosin {beta}(10) inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer research 65, 137-148.

Leydig, F. (1850). Zur anatomie der mannlichen geschlechtsorgane und analdrusen der saugethiere, Vol 2 (Z Wiss Zool).

Li, B., Baba, T., Miyabayashi, K., Sato, T., Shima, Y., Ichinose, T., Miura, D., Ohkawa, Y., Suyama, M., and Morohashi, K.I. (2017). Role of Ad4-binding protein/steroidogenic factor 1 in regulating NADPH production in adrenocortical Y-1 cells. Endocrine journal 64, 315-324.

Lovell-Badge, R., and Robertson, E. (1990). XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development 109, 635-646.

Lun, A.T., McCarthy, D.J., and Marioni, J.C. (2016). A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5, 2122.

Luo, X., Ikeda, Y., and Parker, K.L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481-490.

Martin, L.J. (2016). Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Molecular reproduction and development 83, 470-487.

McClelland, K.S., Bell, K., Larney, C., Harley, V.R., Sinclair, A.H., Oshlack, A., Koopman, P., and Bowles, J. (2015). Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells. Biology of reproduction 92, 145.

Meeks, J.J., Crawford, S.E., Russell, T.A., Morohashi, K.-i., Weiss, J., and Jameson, J.L. (2003). Dax1 regulates testis cord organization during gonadal differentiation. Development 130, 1029-1036.

Miyabayashi, K., Katoh-Fukui, Y., Ogawa, H., Baba, T., Shima, Y., Sugiyama, N., Kitamura, K., and Morohashi, K. (2013). Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells. PLoS One 8, e68050.

Miyabayashi, K., Tokunaga, K., Otake, H., Baba, T., Shima, Y., and Morohashi, K.-i. (2015). Heterogeneity of Ovarian Theca and Interstitial Gland Cells in Mice. PLoS ONE 10, e0128352.

Miyado, M., Nakamura, M., Miyado, K., Morohashi, K.-i., Sano, S., Nagata, E., Fukami, M., and Ogata, T. (2012). Mamld1 Deficiency Significantly Reduces mRNA Expression Levels of Multiple Genes Expressed in Mouse Fetal Leydig Cells but Permits Normal Genital and Reproductive Development. Endocrinology 153, 6033-6040.

Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I., and Aizawa, S. (1997). Defects of urogenital development in mice lacking Emx2. Development 124, 1653-1664.

Morohashi, K., Honda, S., Inomata, Y., Handa, H., and Omura, T. (1992). A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. The Journal of biological chemistry 267, 17913-17919.

Morohashi, K.I., and Omura, T. (1996). Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 10, 1569-1577.

Nel-Themaat, L., Vadakkan, T.J., Wang, Y., Dickinson, M.E., Akiyama, H., and Behringer, R.R. (2009). Morphometric analysis of testis cord formation in Sox9-EGFP mice. Developmental dynamics : an official publication of the American Association of Anatomists 238, 1100-1110.

O'Shaughnessy, P.J., Baker, P.J., Heikkila, M., Vainio, S., and McMahon, A.P. (2000). Localization of 17beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase isoform expression in the developing mouse testis--androstenedione is the major androgen secreted by fetal/neonatal leydig cells. Endocrinology 141, 2631-2637.

O'Shaughnessy, P.J., Baker, P.J., and Johnston, H. (2006). The foetal Leydig cell-- differentiation, function and regulation. International journal of andrology 29, 90-95; discussion 105-108.

Ogata, T., Sano, S., Nagata, E., Kato, F., and Fukami, M. (2012). MAMLD1 and 46,XY disorders of sex development. Seminars in reproductive medicine 30, 410-416.

Orth, J.M. (1982). Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. The Anatomical record 203, 485-492.

Pala, R., Alomari, N., and Nauli, S.M. (2017). Primary Cilium-Dependent Signaling Mechanisms. International journal of molecular sciences 18.

Park, S.Y., Meeks, J.J., Raverot, G., Pfaff, L.E., Weiss, J., Hammer, G.D., and Jameson, J.L. (2005). Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 132, 2415-2423.

Parker, K.L., and Schimmer, B.P. (1997). Steroidogenic factor 1: a key determinant of endocrine development and function. Endocrine reviews 18, 361-377.

Pietrobono, S., Santini, R., Gagliardi, S., Dapporto, F., Colecchia, D., Chiariello, M., Leone, C., Valoti, M., Manetti, F., Petricci, E., et al. (2018). Targeted inhibition of Hedgehog-GLI signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell death & disease 9, 142.

Potter, S.J., and DeFalco, T. (2017). Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction (Cambridge, England) 153, R151-r162.

Qin, J., Tsai, M.J., and Tsai, S.Y. (2008). Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3, e3285.

Rohatgi, R., Milenkovic, L., and Scott, M.P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science (New York, NY) 317, 372-376.

Roosen-Runge, E.C., and Anderson, D. (1959). The development of the interstitial cells in the testis of the albino rat. Acta anatomica 37, 125-137.

Safer, D., Elzinga, M., and Nachmias, V.T. (1991). Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. The Journal of biological chemistry 266, 4029-4032.

Safer, D., Golla, R., and Nachmias, V.T. (1990). Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proceedings of the National Academy of Sciences of the United States of America 87, 2536-2540.

Schmahl, J., Kim, Y., Colvin, J.S., Ornitz, D.M., and Capel, B. (2004). Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131, 3627-3636.

Schneider, L., Cammer, M., Lehman, J., Nielsen, S.K., Guerra, C.F., Veland, I.R., Stock, C., Hoffmann, E.K., Yoder, B.K., Schwab, A., et al. (2010). Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 25, 279-292.

Schneider, L., Clement, C.A., Teilmann, S.C., Pazour, G.J., Hoffmann, E.K., Satir, P., and Christensen, S.T. (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Current biology : CB 15, 1861-1866.

Seeley, E.S., Carriere, C., Goetze, T., Longnecker, D.S., and Korc, M. (2009). Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer research 69, 422-430.

Sekido, R., Bar, I., Narvaez, V., Penny, G., and Lovell-Badge, R. (2004). SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Developmental biology 274, 271-279.

Sekido, R., and Lovell-Badge, R. (2008). Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930-934.

Shima, Y., Matsuzaki, S., Miyabayashi, K., Otake, H., Baba, T., Kato, S., Huhtaniemi, I., and Morohashi, K. (2015). Fetal Leydig Cells Persist as an Androgen-Independent Subpopulation in the Postnatal Testis. Molecular endocrinology 29, 1581-1593.

Shima, Y., Miyabayashi, K., Baba, T., Otake, H., Katsura, Y., Oka, S., Zubair, M., and Morohashi, K. (2012). Identification of an enhancer in the Ad4BP/SF-1 gene specific for fetal Leydig cells. Endocrinology 153, 417-425.

Shima, Y., Miyabayashi, K., Haraguchi, S., Arakawa, T., Otake, H., Baba, T., Matsuzaki, S., Shishido, Y., Akiyama, H., Tachibana, T., et al. (2013). Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Molecular endocrinology 27, 63-73.

Shima, Y., Miyabayashi, K., Sato, T., Suyama, M., Ohkawa, Y., Doi, M., Okamura, H., and Suzuki, K. (2018). Fetal Leydig cells dedifferentiate and serve as adult Leydig stem cells. Development 145.

Shima, Y., and Morohashi, K.I. (2017). Leydig progenitor cells in fetal testis. Molecular and cellular endocrinology 445, 55-64.

Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R., and Goodfellow, P.N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240-244.

Singla, V., and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science (New York, NY) 313, 629-633.

Sladek, R., Bader, J.A., and Giguere, V. (1997). The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Molecular and cellular biology 17, 5400-5409.

Stasiulewicz, M., Gray, S.D., Mastromina, I., Silva, J.C., Bjorklund, M., Seymour, P.A., Booth, D., Thompson, C., Green, R.J., Hall, E.A., et al. (2015). A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development 142, 2291-2303.

Stevant, I., Neirijnck, Y., Borel, C., Escoffier, J., Smith, L.B., Antonarakis, S.E., Dermitzakis, E.T., and Nef, S. (2018). Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell reports 22, 1589-1599.

Svingen, T., and Koopman, P. (2013). Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes & development 27, 2409-2426.

Tang, H., Brennan, J., Karl, J., Hamada, Y., Raetzman, L., and Capel, B. (2008). Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 135, 3745-3753.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 25, 1105-1111.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 7, 562-578.

Tukachinsky, H., Lopez, L.V., and Salic, A. (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. The Journal of cell biology 191, 415-428.

Vainio, S., Heikkila, M., Kispert, A., Chin, N., and McMahon, A.P. (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405-409.

van den Driesche, S., Walker, M., McKinnell, C., Scott, H.M., Eddie, S.L., Mitchell, R.T., Seckl, J.R., Drake, A.J., Smith, L.B., Anderson, R.A., et al. (2012). Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS One 7, e37064.

Wainwright, E.N., Svingen, T., Ng, E.T., Wicking, C., and Koopman, P. (2014). Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Developmental biology 395, 342-354.

Wen, Q., Wang, Y., Tang, J., Cheng, C.Y., and Liu, Y.X. (2016). Sertoli Cell Wt1 Regulates Peritubular Myoid Cell and Fetal Leydig Cell Differentiation during Fetal Testis Development. PLoS One 11, e0167920.

Wen, Q., Zheng, Q.S., Li, X.X., Hu, Z.Y., Gao, F., Cheng, C.Y., and Liu, Y.X. (2014).

Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. American journal of physiology Endocrinology and metabolism 307, E1131-1143.

Wilhelm, D., Hiramatsu, R., Mizusaki, H., Widjaja, L., Combes, A.N., Kanai, Y., and Koopman, P. (2007). SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. The Journal of biological chemistry 282, 10553-10560.

Yao, H.H., Whoriskey, W., and Capel, B. (2002). Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes & development 16, 1433-1440.

Ye, L., Li, X., Li, L., Chen, H., and Ge, R.S. (2017). Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Frontiers in physiology 8, 430.

Yokonishi, T., Sato, T., Katagiri, K., Komeya, M., Kubota, Y., and Ogawa, T. (2013). In Vitro Reconstruction of Mouse Seminiferous Tubules Supporting Germ Cell Differentiation. Biology of reproduction.

Yokoyama, C., Chigi, Y., Baba, T., Ohshitanai, A., Harada, Y., Takahashi, F., and Morohashi, K.I. (2019). Three populations of adult Leydig cells in mouse testes revealed by a novel mouse HSD3B1-specific rat monoclonal antibody. Biochemical and biophysical research communications 511, 916-920.

Yu, F.X., Lin, S.C., Morrison-Bogorad, M., Atkinson, M.A., and Yin, H.L. (1993). Thymosin beta 10 and thymosin beta 4 are both actin monomer sequestering proteins. The Journal of biological chemistry 268, 502-509.

Zubair, M., Ishihara, S., Oka, S., Okumura, K., and Morohashi, K. (2006). Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox-Pbx1-Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Molecular and cellular biology 26, 4111-4121.

Zubair, M., Oka, S., Parker, K.L., and Morohashi, K. (2009). Transgenic expression of Ad4BP/SF-1 in fetal adrenal progenitor cells leads to ectopic adrenal formation. Molecular endocrinology 23, 1657-1667.

参考文献をもっと見る