リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Configurational evidence for antiferromagnetic interaction in disordered magnetic ionic liquids by X-ray scattering-aided hybrid reverse Monte Carlo simulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Configurational evidence for antiferromagnetic interaction in disordered magnetic ionic liquids by X-ray scattering-aided hybrid reverse Monte Carlo simulation

Futamura, Ryusuke Takasaki, Yuma Otsuka, Hayato Ozeki, Sumio Kaneko, Katsumi Iiyama, Taku 信州大学 DOI:10.1016/j.molliq.2020.113321

2020.07.08

概要

Magnetic ionic liquids (MIL) are a new type of ionic liquids that show paramagnetic response to magnetic fields. Here, we elucidate a plausible 3D liquid structure of the 1-ethyl-3-methyl-imidazolium tetrachloroferate (Emim[FeCl4]) and 1-butyl-3-methyl-imidazolium tetrachloroferate (Bmim[FeCl4]) MILs by X-ray scattering-aided hybrid reverse Monte Carlo simulations. Bmim[FeCl4] showed anomalously continuous structural changes over a wide temperature range (90–523 K) without crystallization, while Emim[FeCl4] displayed a melting point at 291 K with no glass transition.
Conventional electron radial distribution function (ERDF) analysis provides misleading information about the structures of these MILs due to the mutual cancelation of the partial anion-anion and anion-cation ERDFs. Subsequent hybrid reverse Monte Carlo (HRMC) analysis revealed the precise coordination structures of both ionic liquids, and the alternating periodic arrangement of the anions and cations was visualized based on the HRMC simulation results. The results clearly revealed that the 1st coordination structure of the FeCl4 anion around the Bmim cation was widespread compared to that of the Emim cation, resulting in the absence of crystallization. In addition, we obtained new insights into the antiferromagnetic interaction between the FeCl4− ions of Bmim[FeCl4] even in the absence of the crystallization at low temperatures. Our results shed new light on the development of MILs not only for practical applications but also for the advancing the basic science of pure liquids with a high magnetic response.

この論文で使われている画像

参考文献

[1] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nature Materials, 8,

(2009) 621-629.

17

[2] R. D. Rogers, K. R. Seddon, Science, 302 (2003) 792-793.

[3] M. Freemantle, An Introduction to Ionic Liquids, RSC Publishing, 2010.

[4] M. J. Earle, K. R. Seddon, Pure and Applied Chemistry, 72 (2000), 1391-1398.

[5] S. Hayashi, H. Hamaguchi, Chemistry Letters 33, (2004) 1590-1591.

[6] A. Joseph, G. Żyła, V. I. Thomas, P. R. Nair, A.S. Padmanabhan, S. Mathew, Journal

of Molecular Liquids, 19, (2016) 319-331.

[7] A. García-Saiz, P. Migowski, O. Vallcorba, J. Junquera, J. A. Blanco, J. A. González,

M.T. Fernández-Díaz, J. Rius, J. Dupont, J. R. Fernández, I. de Pedro, Chemistry - A

European Journal, 20 (2014) 72-76.

10

[8] T. Inagaki, T. Mochida, Chemistry Letters, 39 (2010) 572-573.

11

[9] E. Santos, J. Albo, A. Irabien, RSC Advances, 4 (2014) 40008-40018.

12

[10] K. D. Clark, O. Nacham, J. A. Purslow, S. A. Pierson, J. L. Anderson, Analytica

13

14

15

Chimica Acta, 934 (2016) 9-21.

[11] D. K. Bwambok, M. M. Thuo, M. B. J. Atkinson, K. A. Mirica, N. D. Shapiro, G. M.

Whitesides, Analytical Chemistry, 85 (2013) 8442-8447.

16

[12] A. Mertelj, D. Lisjak, M. Drofenik, M. Čopič, Nature, 504 (2013) 237-241.

17

[13] I. de Pedro, D. P. Rojas, J. Albo, P. Luis, A. Irabien, J. A. Blanco, J. R. Fernández,

18

Journal of Physics: Condensed Matter, 22 (2010) 296006.

18

[14] I. de Pedro, D. P. Rojas, J. A Blanco, J. R. Fernández, Journal of Magnetism and

Magnetic Materials, 323 (2011) 1254-1257.

[15] T. Bäcker, O. Breunig, M. Valldor, K. Merz, V. Vasylyeva, A.-V. Mudring, Crystal

Growth & Design, 11 (2011) 2564-2571.

[16] R. Hayes, G. G. Warr, R. Atkin, Chemical Reviews, 115 (2015) 6357-6426.

[17] S. H. Mir, L. A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa, A. Khosla,

10

11

12

13

14

15

16

17

Journal of Electrochemical Society, 165 (2018), B3137-B3156.

[18] P. P. Shi, Q. Ye, Q. Li, H.-T. Wang, D.-W. Fu, Y. Zhang, R.-G. Xiong, Chemistry of

Materials, 26 (2014) 6042-6049.

[19] A. H. Narten, M. D. Danford, H. A. Levy, Discussions of the Faraday Society, 43

(1967) 97-107.

[20] S. Bouazizi, S. Nasr, N. Jaîdane, M. C. Bellissent-Funel. The Journal of Physical

Chemistry B, 110 (2006) 23515-23523.

[21] H. Katayanagi, S. Hayashi, H. Hamaguchi K. Nishikawa, Chemical Physics Letters,

392 (2004) 460-464.

[22] J. N. A. C. Lopes, A. A. H. Pádua, The Journal of Physical Chemistry B, 110 (2006)

3330-3335.

19

[23] S. Fukuda, M. Takeuchi, K. Fujii, R. Kanzaki, T. Takamuku, K. Chiba, H. Yamamoto,

Y. Umebayashi, S. Ishiguro, Journal of Molecular Liquids, 143 (2008) 2-7.

[24] H. Morita, S. Kohara, T. Usuki. Journal of Molecular Liquids, 147 (2009) 182-185.

[25] K. Fujii, Y. Soejima, Y. Kyoshoin, S. Fukuda, R. Kanzaki, Y. Umebayashi, T.

Yamaguchi, S. Ishiguro, T. Takamuku, The Journal of Physical Chemistry B, 112 (2008)

4329-4336.

10

11

12

[26] R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M. J. Biggs, M. Salanne, J. Ségalini,

P. Simon, K. Kaneko, Nature Materials, 16 (2017) 1225-1231.

[27] S. K. Jain, R. J.-M. Pellenq, J. P. Pikunic, K. E. Gubbins, Langmuir 22 (2006) 99429948.

[28] T. Petersen, I. Yarovsky, I. Snook, D. G. McCulloch, G. Opletal, Carbon 41 (2003)

2403-2411.

13

[29] M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G.

14

Scalmani, V.Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 1, Gaussian,

15

Inc., Walling-ford, CT, USA, 2009.

16

17

[30] C. M. Breneman, K. B. Wiberg, Journal of Computational Chemistry, 11 (1990) 361373.

20

[31] R. Futamura, M. Jorge, J. R. B. Gomes, Theoretical Chemistry Accounts, 132 (2013)

1323-1324.

[32] S. Tsuzuki, A. A. Arai, K. Nishikawa, The Journal of Physical Chemistry B, 112

(2008) 7739–7747.

[33] T. Iiyama, K. Nishikawa, T. Suzuki, T. Otowa, M. Hijiriyama, Y. Nojima, K. Kaneko,

The Journal of Physical Chemistry B, 101 (1997) 3037-3042.

[34] Y. Yoshida, G. Saito, Journal of Materials Chemistry, 16 (2006) 1254-1262.

[35] M. Yoshimoto, R. Futamura, A. Hoshikawa, T. Ishigaki, T. Uchida, T. Iiyama,

10

11

Chemistry Letters, 46 (2017) 923-925.

[36] A. García-Saiz, I. de Pedro, J. A. Blanco, J. González, J. R. Fernández, The Journal

of Physical Chemistry B, 117 (2013) 3198-3206.

21

Fig. 1. Corrected X-ray scattering profiles of Emim[FeCl4] (top) and Bmim[FeCl4]

(bottom). The dashed curves indicate the sum of the independent atomic scattering

profiles of each IL. Vertical blue dashed lines indicate the peak positions of Emim[FeCl4]

provided to guide the eye.

22

Fig. 2. (a,b) Electron radial functions (ERDFs) of (a) Emim[FeCl4] and (a) Bmim[FeCl4].

Open circles and solid lines denote the experimental results and the results of the HRMC

simulations, respectively. (c,d) Each component ERDF obtained by HRMC simulations

for (c) Emim[FeCl4] and (d) Bmim[FeCl4], with intra-molecule (sky blue), inter anion

(green), inter cation-anion (blue), and inter cation (red) components shown.

10

23

Fig. 3. Spatial distribution functions (SDFs) of Emim[FeCl4] (top) and Bmim[FeCl4]

(bottom) for the 1st coordination structure of Fe around the cations evaluated by HRMC

simulations. In these figures, the plane of the imidazolium ring is parallel to the x-y plane

and the z direction is perpendicular to the x-y plane. Cyan, blue, and white spheres

represent carbon, nitrogen, and hydrogen atoms, respectively.

10

24

Fig. 4. (a) Temperature dependence of the X-ray scattering profiles of Bmim[FeCl4] from

90 K to 523 K. (b) ERDFs of Bmim[FeCl4] at 90 K (red), 298 K (green), and 523 K

(purple). (c) Component anion-anion ERDFs evaluated by HRMC simulations for

Bmim[FeCl4] at 90 K (red), 298 K (green), and 523 K (purple). Inset shows the SDF of

the nearest Cl atoms around the FeCl4 ion at 90 K. Here, green and gray spheres represent

the chlorine and iron atoms of the FeCl4 ion, respectively.

10

11

12

25

Fig. 5. Spatial distribution functions of Bmim[FeCl4] for the 1st coordination structure

of Fe around the cations evaluated using HRMC simulations at 90 K (left), 298 K (center),

and 523 K (right). In these figures, the plane of the imidazolium ring is parallel to the x-

y plane, and the z direction is perpendicular to the x-y plane.

26

Fig. 6. Distribution of the assembling number of neighboring FeCl4- ions in

Bmim[FeCl4] at 90 K. Here, we defined the Cl-Cl neighbor distance as less than 0.39 nm.

(Inset) 3-, 4-, 5-, and 6-member networks of FeCl4- ions in the simulation snapshot. Green

and gray spheres represent the Cl and Fe atoms, respectively. Red lines connect the Fe

atoms in the Fe-Cl-Cl-Fe networks.

27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る