リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dependence property of isoelectric points and pH environment on enzyme immobilization on maghemite/hydroxyapatite composite particles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dependence property of isoelectric points and pH environment on enzyme immobilization on maghemite/hydroxyapatite composite particles

Yabutsuka, Takeshi Yamamoto, Masaya Takai, Shigeomi 京都大学 DOI:10.2109/jcersj2.21118

2022.01

概要

We aimed to establish enzyme immobilization technology using the maghemite/hydroxyapatite (Fe₂O₃/HA) composite particles as enzyme immobilization carriers and to clarify the enzyme adsorption characteristics of the composite particles. Seven kinds of enzymes with various isoelectric points (pI) were immobilized on the Fe2O3/HA composite particles in buffered solution adjusted at pH = 7.40 or pH = 10.0, 36.5 °C. Effects of the enzyme pI and the solution pH on the immobilization were investigated. In both of the two kinds of buffered solutions, there was an increase or decrease distribution with a maximum local value for |pH-pI|, which indicated the charge state of the enzymes. The interaction between HA on the composite particles and adsorbed enzymes was expected to be the largest when |pH-pI| = 1–2. It was suggested that α-chymotrypsin, whose adsorbed amount was the most among the seven kinds of the enzymes, in addition, formed a monolayer on the surface of the composite particles in the buffered solution at pH = 7.40, 36.5 °C.

この論文で使われている画像

参考文献

(a) Adsorption isotherm and (b) Langmuir’s plots of ¡chymotrypsin on Fe2O3/HA composite particles in PBS.

Fig. 6.

«pH-pI«. This suggested that the immobilization of the

enzyme on HA was not dominated by the interaction of the

electric double layer but was caused by various factors

such as van der Waals forces and local ionic interactions.

The immobilization efficiency of ¡-chymotrypsin was the

highest for both solvents at pH = 7.40 and pH = 10.0,

36.5 °C, where «pH-pI« = 1­2. This suggested that the

interaction between the HA and the enzyme is the largest

when «pH-pI« = 1­2. The prepared Fe2O3/HA composite

particles showed the possibility of immobilizing various

kinds of enzymes with high efficiency by using solvents

that make «pH-pI« = 1­2. Alpha-chymotrypsin, which

showed the most immobilization efficiency, was suggested

to form a monolayer on the Fe2O3/HA composite particles

in PBS. This study is expected to be helpful for contributing to the development of novel enzyme immobilization carriers with both enzyme affinity and collection

advantage by magnetism.

Acknowledgments This work was partly supported by

Kansai Research Foundation for Technology Promotion,

Japan.

80

1) M. J. Jarcho, J. L. Kay, R. H. Gumaer and H. P.

Drobeck, J. Bioeng., 1, 79­92 (1977).

2) R. Z. LeGeros and J. P. LeGeros, in “An Introduction to

Bioceramics”, Ed. by L. L. Hench, Imperial College

Press, London (2013) pp. 229­277.

3) R. Z. LeGeros and J. P. LeGeros, in “Bioceramics

and Their Clinical Applications”, Ed. by T. Kokubo,

Woodhead Publishing, Cambridge (2008) pp. 367­394.

4) H. Oonishi, H. Oonishi, Jr. and S. C. Kim, in

“Bioceramics and Their Clinical Applications”, Ed. by

T. Kokubo, Woodhead Publishing, Cambridge (2008)

pp. 606­687.

5) D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos and

Y. F. Missirlis, Biomaterials, 22, 87­96 (2001).

6) S. C. Rizzi, D. J. Heath, A. G. A. Coombes, N. Bock,

M. Textor and S. Downes, J. Biomed. Mater. Res., 55,

475­486 (2001).

7) M. Jarcho, Clin. Orthop. Relat. R., 157, 259­278 (1981).

8) A. Tiselius, S. Hjerten and O. Levin, Arch. Biochem.

Biophys., 65, 132­155 (1956).

9) T. Kawasaki, S. Takahashi and K. Ikeda, Eur. J.

Biochem., 152, 361­371 (1985).

10) T. Kawasaki, K. Ikeda, S. Takahashi and Y. Kuboki,

Eur. J. Biochem., 155, 249­257 (1986).

11) E. Mavropoulos, A. M. Costa, L. T. Costa, C. A.

Achete, A. Mello, J. M. Granjeiro and A. M. Rossi,

Colloid Surface B, 83, 1­9 (2011).

12) Y. Ma, J. Zhanga, S. Guo, J. Shi, W. Du, Z. Wang, L. Ye

and W. Gu, Mat. Sci. Eng. C-Mater., 68, 551­556

(2016).

13) A. Oyane, T. Ootsuka, K. Hayama, Y. Sogo and A. Ito,

Acta Biomater., 7, 2969­2976 (2011).

14) J. A. S. Bett, L. G. Christner and W. K. Hall, J. Am.

Chem. Soc., 89, 5535­5541 (1967).

15) H. Hirano, T. Nishimura and T. Iwamura, Anal.

Biochem., 150, 228­234 (1985).

16) T. Kokubo and H. Takadama, Biomaterials, 27, 2907­

2915 (2006).

17) ISO 23317, Implants for surgery ® In vitro evaluation

for apatite-forming ability of implant materials (2014).

18) T. Yao, M. Hibino, S. Yamaguchi and H. Okada, U.S.

Patent, 8178066 (2012), Japanese Patent, 5261712

(2013).

19) T. Yabutsuka, Bull. Ceram. Soc. Jpn., 53, 819­822

(2018).

20) T. Yabutsuka, S. Kumazawa and S. Takai, J. Ceram.

Soc. Jpn., 128, 883­889 (2020).

21) M. Yamamoto, T. Yabutsuka, S. Takai and T. Yao,

T. MRS Jap., 43, 153­156 (2018).

22) M. Bradford, Anal. Biochem., 72, 248­254 (1976).

23) R. M. Wilson, J. C. Elliott, S. E. P. Dowker and L. M.

Rodriguez-Lorenzo, Biomaterials, 26, 1317­1327

(2005).

24) N. Ohtsu, S. Hiromoto, M. Yamane, K. Satoh and M.

Tomozawa, Surf. Coat. Tech., 218, 114­118 (2013).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る