リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells

Chee, Woei-Yaw 大阪大学 DOI:10.18910/82032

2021.03.24

概要

Naked Mole-rat (NMR) is an extraordinary mammal with an insect's social life, the cold-bloodedness of a reptile, and the metabolism of a plant. With a lifespan of 30 years, their peculiar traits have evolved millions of years to make them uniquely suited to survive the harsh condition, exceptionally long without oxygen. Even with its extreme longevity, NMRs are remarkably cancer-resistant, with no cancer cases formally described in this species in the wild. Therefore, to uncover the long lifespan and anti-cancer mechanism of NMR, we have started comparative analyses of the oncogenic signalling between NMR Skin fibroblasts (NSF) and the mouse cell lines (MSF and NIH3T3), which revealed that NMR has unique features in Wnt/ β -catenin signalling. The basal β -catenin (oncoprotein) expression level is remarkably high in NMR when compared to mouse cells. Yet, the growth rate of NSF is prolonged. In addition, dual-luciferase reporter assay corroborated that NSF transfected with TCF/LEF reporter vector has high β-catenin activity. When proceeding with β-catenin downregulation, a decreased growth rate accompanied by an enhanced senescence mechanism is observed in NSF, suggesting that β-catenin still plays a regular role in proliferation. Another interesting finding showed that the unknown microbodies were abolished in β-catenin-knockdown NSF using confocal microscopy. Thus, we used a broad range of methods such as a mitochondrion-selective probe, DAB staining, and Oil Red O staining to determine the NSF's microbodies' true nature. Critically, we identified lipid droplets as potential candidates associated with β-catenin abundance. We also found that NMR fibroblast contains a significantly high cholesterol level, suggesting that lipid droplet accumulation might be caused by the unique cholesterol synthesis pathway regulated by high β-catenin level in NMR. Further experiments revealed perturbation of the cholesterol synthesis pathway using statin or β -catenin knockdown altogether abolish the lipid droplets formation and lead to enhanced senescence in NSF.
Furthermore, RNA-seq analysis in NMR cells revealed that β-catenin knockdown perturbed the expression of multiple genes in cholesterol metabolism. Specifically, genetic ablation of apolipoprotein F suppressed lipid droplet accumulation and promoted cellular senescence, indicating that apolipoprotein F is a critical mediator of the β-catenin signalling on NMR cells. We thus suggest that increased β-catenin activity evolved in NMR to offset senescence via the accumulation of cholesterol-enriched lipid droplets. These findings indicate that β-catenin induced accumulation of cholesterol is crucial for protecting NMR cells from cellular senescence. Hence the anti-senescent effects of the β-catenin signalling reveal new strategies for longevity on NMRs.

この論文で使われている画像

参考文献

1 Tian, X. et al. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proceedings of the National Academy of Sciences 112, 1053-1058, doi:10.1073/pnas.1418203112 (2015).

2 Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature advance online publication, doi:10.1038/nature12234 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12234.html#supplementary- information (2013).

3 Delaney, M. A. et al. Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber). Veterinary pathology 53, 691-696,doi:10.1177/0300985816630796 (2016).

4 Edrey, Y. H., Park, T. J., Kang, H., Biney, A. & Buffenstein, R. Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Experimental gerontology 46, 116-123, doi:10.1016/j.exger.2010.09.005 (2011).

5 Larson, J. & Park, T. J. Extreme hypoxia tolerance of naked mole-rat brain. Neuroreport 20, 1634-1637, doi:10.1097/WNR.0b013e32833370cf (2009).

6 Park, T. J. et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science (New York, N.Y.) 356, 307-311, doi:10.1126/science.aab3896 (2017).

7 Yu, C. et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One 6, e26729, doi:10.1371/journal.pone.0026729 (2011).

8 Austad, S. N. Comparative Biology of Aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 64A, 199-201, doi:10.1093/gerona/gln060 (2009).

9 Edrey, Y. H., Hanes, M., Pinto, M., Mele, J. & Buffenstein, R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR journal 52, 41-53 (2011).

10 Buffenstein, R. Negligible senescence in the longest living rodent, the naked mole- rat: insights from a successfully aging species. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology 178, 439-445, doi:10.1007/s00360-007-0237-5 (2008).

11 Seluanov, A. et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America 106, 19352-19357, doi:10.1073/pnas.0905252106 (2009).

12 Lipman, R., Galecki, A., Burke, D. T. & Miller, R. A. Genetic loci that influence cause of death in a heterogeneous mouse stock. The journals of gerontology. Series A, Biological sciences and medical sciences 59, 977-983 (2004).

13 Liang, S., Mele, J., Wu, Y., Buffenstein, R. & Hornsby, P. J. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging cell 9, 626-635, doi:10.1111/j.1474- 9726.2010.00588.x (2010).

14 Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Reviews Cancer 8, 387, doi:10.1038/nrc2389 https://www.nature.com/articles/nrc2389#supplementary-information (2008).

15 Mosimann, C., Hausmann, G. & Basler, K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10, 276-286, doi:10.1038/nrm2654 (2009).

16 Liu, C. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847 (2002).

17 Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. The EMBO journal 18, 2401-2410, doi:10.1093/emboj/18.9.2401 (1999).

18 Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO journal 16, 3797-3804, doi:10.1093/emboj/16.13.3797 (1997).

19 Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604-608, doi:10.1038/26982 (1998).

20 Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608-612, doi:10.1038/26989 (1998).

21 Stamos, J. L., Chu, M. L., Enos, M. D., Shah, N. & Weis, W. I. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife 3, e01998, doi:10.7554/eLife.01998 (2014).

22 Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426, doi:10.1038/18884 (1999).

23 He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science (New York, N.Y.) 281, 1509-1512 (1998).

24 Batlle, E. et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251-263 (2002).

25 Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Molecular cell 36, 872-884, doi:10.1016/j.molcel.2009.11.017 (2009).

26 Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Molecular and cellular biology 22, 1184-1193 (2002).

27 Yan, D. et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proceedings of the National Academy of Sciences of the United States of America 98, 14973-14978, doi:10.1073/pnas.261574498 (2001).

28 Jho, E. H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and cellular biology 22, 1172- 1183 (2002).

29 Hedgepeth, C. M., Deardorff, M. A. & Klein, P. S. Xenopus axin interacts with glycogen synthase kinase-3 beta and is expressed in the anterior midbrain. Mechanisms of Development 80, 147-151, doi:https://doi.org/10.1016/S0925-4773(98)00203-2 (1999).

30 Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO journal 17, 1371-1384, doi:10.1093/emboj/17.5.1371 (1998).

31 Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current biology : CB 8, 573-581 (1998).

32 Li, V. S. et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149, 1245-1256, doi:10.1016/j.cell.2012.05.002 (2012).

33 Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science (New York, N.Y.) 316, 1619-1622, doi:10.1126/science.1137065 (2007).

34 Kim, S. & Jho, E. H. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). The Journal of biological chemistry 285, 36420-36426, doi:10.1074/jbc.M110.137471 (2010).

35 Schwarz-Romond, T. et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature structural & molecular biology 14, 484-492, doi:10.1038/nsmb1247 (2007).

36 Kim, S. E. et al. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science (New York, N.Y.) 340, 867-870, doi:10.1126/science.1232389 (2013).

37 Anvarian, Z. et al. Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature structural & molecular biology 23, 324-332, doi:10.1038/nsmb.3191 (2016).

38 Leung, J. Y. et al. Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. The Journal of biological chemistry 277, 21657-21665, doi:10.1074/jbc.M200139200 (2002).

39 Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235-237, doi:10.1038/359235a0 (1992)

40 Senda, T., Iizuka-Kogo, A., Onouchi, T. & Shimomura, A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical molecular morphology 40, 68-81, doi:10.1007/s00795-006-0352-5 (2007).

41 Kohler, E. M., Chandra, S. H., Behrens, J. & Schneikert, J. Beta-catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Human molecular genetics 18, 213-226, doi:10.1093/hmg/ddn338 (2009).

42 Roberts, D. M. et al. Deconstructing the sscatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Molecular biology of the cell 22, 1845-1863, doi:10.1091/mbc.E10-11-0871 (2011).

43 Choi, S. H., Estaras, C., Moresco, J. J., Yates, J. R., 3rd & Jones, K. A. alpha-Catenin interacts with APC to regulate beta-catenin proteolysis and transcriptional repression of Wnt target genes. Genes & development 27, 2473-2488, doi:10.1101/gad.229062.113 (2013).

44 Rubinfeld, B. et al. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science (New York, N.Y.) 275, 1790-1792 (1997).

45 Rubinfeld, B. et al. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science (New York, N.Y.) 272, 1023-1026 (1996).

46 Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor- suppressor protein. Proceedings of the National Academy of Sciences of the United States of America 92, 3046-3050 (1995).

47 Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences of the United States of America 94, 3034-3039 (1997).

48 Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545 (2001).

49 Rosin‐Arbesfeld, R., Cliffe, A., Brabletz, T. & Bienz, M. Nuclear export of the APC tumour suppressor controls β‐catenin function in transcription. The EMBO journal 22, 1101-1113, doi:10.1093/emboj/cdg105 (2003).

50 Henderson, B. R. & Fagotto, F. The ins and outs of APC and β‐catenin nuclear transport. EMBO reports 3, 834-839, doi:10.1093/embo-reports/kvf181 (2002).

51 Dale, T. C. Signal transduction by the Wnt family of ligands. The Biochemical journal 329 ( Pt 2), 209-223 (1998).

52 Dierick, H. & Bejsovec, A. Cellular mechanisms of wingless/Wnt signal transduction. Current topics in developmental biology 43, 153-190 (1999).

53 Miyoshi, Y. et al. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncology research 10, 591- 594 (1998).

54 Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer research 58, 1130- 1134 (1998).

55 Sutherland, C. What Are the bona fide GSK3 Substrates? International journal of Alzheimer's disease 2011, 505607, doi:10.4061/2011/505607 (2011).

56 Uchida, Y. et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes to cells : devoted to molecular & cellular mechanisms 10, 165-179, doi:10.1111/j.1365- 2443.2005.00827.x (2005).

57 Hagen, T. & Vidal-Puig, A. Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochemical and biophysical research communications 294, 324-328, doi:10.1016/s0006-291x(02)00485-0 (2002).

58 Scales, T. M., Lin, S., Kraus, M., Goold, R. G. & Gordon-Weeks, P. R. Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci 122, 2424-2435, doi:10.1242/jcs.040162 (2009).

59 Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873-877, doi:10.1038/nature04185 (2005).

60 Jope, R. S. & Johnson, G. V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102, doi:10.1016/j.tibs.2003.12.004 (2004).

61 Stambolic, V. & Woodgett, J. R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochemical Journal 303, 701-704 (1994).

62 Thornton, T. M. et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science (New York, N.Y.) 320, 667-670, doi:10.1126/science.1156037 (2008).

63 Miyawaki, S. et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun 7, 11471, doi:10.1038/ncomms11471 (2016).

64 Akagi, T., Sasai, K. & Hanafusa, H. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc. Natl. Acad. Sci. U. S. A. 100, 13567-13572, doi:10.1073/pnas.1834876100 (2003).

65 Krämer, A., Green, J., Pollard, J., Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics (Oxford, England) 30, 523-530 (2013).

66 Koopman, R., Schaart, G. & Hesselink, M. K. Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem. Cell Biol. 116, 63-68, doi:10.1007/s004180100297 (2001).

67 Christian, A. E., Haynes, M. P., Phillips, M. C. & Rothblat, G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38, 2264- 2272 (1997).

68 Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochimica et Biophysica Acta (BBA) - Biomembranes 1768, 1311-1324, doi:https://doi.org/10.1016/j.bbamem.2007.03.026 (2007).

69 Oneyama, C. et al. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol. Cell 30, 426-436, doi:10.1016/j.molcel.2008.03.026 (2008).

70 Huang, Y. et al. IWP2 impairs the development of porcine somatic cell nuclear transfer embryos via Wnt signaling pathway inactivation. Biomed Rep 7, 36-40, doi:10.3892/br.2017.918 (2017).

71 Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787 (1997).

72 Kasai, H. et al. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7, 1849-1851, doi:10.1093/carcin/7.11.1849 (1986).

73 Cutler, R. G. Antioxidants and aging. Am. J. Clin. Nutr. 53, 373S-379S, doi:10.1093/ajcn/53.1.373S (1991).

74 Sherwood, S. W., Rush, D., Ellsworth, J. L. & Schimke, R. T. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl. Acad. Sci. U. S. A. 85, 9086-9090, doi:10.1073/pnas.85.23.9086 (1988).

75 Chen, H., Li, Y. & Tollefsbol, T. O. Cell senescence culturing methods. Methods Mol. Biol. 1048, 1-10, doi:10.1007/978-1-62703-556-9_1 (2013).

76 Geltinger, F. et al. The transfer of specific mitochondrial lipids and proteins to lipid droplets contributes to proteostasis upon stress and aging in the eukaryotic model system Saccharomyces cerevisiae. Geroscience 42, 19-38, doi:10.1007/s11357-019- 00103-0 (2020).

77 Shimabukuro, M. K. et al. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci. Rep. 6, 23795, doi:10.1038/srep23795 (2016).

78 Lagor, W. R. et al. The effects of apolipoprotein F deficiency on high density lipoprotein cholesterol metabolism in mice. PLoS One 7, e31616-e31616, doi:10.1371/journal.pone.0031616 (2012).

79 Day, J. R. et al. Purification and molecular cloning of human apolipoprotein F. Biochemical and biophysical research communications 203, 1146-1151, doi:10.1006/bbrc.1994.2302 (1994).

80 Morton, R. E. & Steinbrunner, J. V. Determination of lipid transfer inhibitor protein activity in human lipoprotein-deficient plasma. Arteriosclerosis and thrombosis : a journal of vascular biology 13, 1843-1851, doi:10.1161/01.atv.13.12.1843 (1993).

81 Wang, X., Driscoll, D. M. & Morton, R. E. Molecular cloning and expression of lipid transfer inhibitor protein reveals its identity with apolipoprotein F. The Journal of biological chemistry 274, 1814-1820, doi:10.1074/jbc.274.3.1814 (1999).

82 Serdyuk, A. P. & Morton, R. E. Lipid transfer inhibitor protein defines the participation of lipoproteins in lipid transfer reactions: CETP has no preference for cholesteryl esters in HDL versus LDL. Arteriosclerosis, thrombosis, and vascular biology 19, 718-726, doi:10.1161/01.atv.19.3.718 (1999).

83 Barja, G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19, 1420-1445, doi:10.1089/ars.2012.5148 (2013).

84 Maheshwari, A., Misro, M. M., Aggarwal, A., Sharma, R. K. & Nandan, D. N-acetyl- L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun. Molecular reproduction and development 78, 69-79, doi:10.1002/mrd.21268 (2011).

85 Herbst, A. et al. Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC genomics 15, 74, doi:10.1186/1471-2164-15-74 (2014).

86 White, B. D., Chien, A. J. & Dawson, D. W. Dysregulation of Wnt/β-catenin Signaling in Gastrointestinal Cancers. Gastroenterology 142, 219-232, doi:10.1053/j.gastro.2011.12.001 (2012).

87 Brabletz, T. et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America 98, 10356-10361, doi:10.1073/pnas.171610498 (2001).

88 Salahshor, S. & Woodgett, J. R. The links between axin and carcinogenesis. Journal of clinical pathology 58, 225-236, doi:10.1136/jcp.2003.009506 (2005).

89 Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159-170 (1996).

90 Wu, D. & Pan, W. GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences 35, 161-168, doi:10.1016/j.tibs.2009.10.002 (2010).

91 Delmas, V. et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes & development 21, 2923-2935, doi:10.1101/gad.450107 (2007).

92 Bishop, C. L. et al. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16(INK4A). Molecular cell 40, 533-547, doi:10.1016/j.molcel.2010.10.027 (2010).

93 Florian, M. C. et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503, 392-396, doi:10.1038/nature12631 (2013).

94 Zhang, F., White, R. L. & Neufeld, K. L. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences 97, 12577-12582, doi:10.1073/pnas.230435597 (2000).

95 Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134, 165-179 (1996).

96 Bienz, M. APC: the plot thickens. Current opinion in genetics & development 9, 595- 603 (1999).

97 Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature cell biology 2, 653-660, doi:10.1038/35023605 (2000).

98 Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009-1012, doi:10.1038/35023016 (2000).

99 Caspi, M., Zilberberg, A., Eldar-Finkelman, H. & Rosin-Arbesfeld, R. Nuclear GSK- 3beta inhibits the canonical Wnt signalling pathway in a beta-catenin phosphorylation-independent manner. Oncogene 27, 3546-3555, doi:10.1038/sj.onc.1211026 (2008).

100 Morisco, C. et al. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. The Journal of biological chemistry 276, 28586-28597, doi:10.1074/jbc.M103166200 (2001).

101 Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. The Journal of biological chemistry 278, 51606-51612, doi:10.1074/jbc.M310722200 (2003).

102 Linseman, D. A. et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 9993-10002, doi:10.1523/jneurosci.2057-04.2004 (2004).

103 Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor snail. The Journal of biological chemistry 280, 11740- 11748, doi:10.1074/jbc.M413878200 (2005).

104 Watcharasit, P. et al. Direct, activating interaction between glycogen synthase kinase- 3beta and p53 after DNA damage. Proceedings of the National Academy of Sciences of the United States of America 99, 7951-7955, doi:10.1073/pnas.122062299 (2002).

105 Hulsken, J., Birchmeier, W. & Behrens, J. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127, 2061-2069 (1994).

106 Behrens, J. et al. Functional interaction of an axin homolog, conductin, with beta- catenin, APC, and GSK3beta. Science (New York, N.Y.) 280, 596-599 (1998).

107 Zhang, M. et al. Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21(Cip1/Waf1) Pathway. Oxid. Med. Cell. Longev. 2016, 7524308, doi:10.1155/2016/7524308 (2016).

108 Smith, L. L. Another cholesterol hypothesis: cholesterol as antioxidant. Free Radic. Biol. Med. 11, 47-61, doi:10.1016/0891-5849(91)90187-8 (1991).

109 Tirinato, L. et al. Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. STEM CELLS 33, doi:10.1002/stem.1837 (2015).

110 Yao, Y. et al. Canonical Wnt Signaling Remodels Lipid Metabolism in Zebrafish Hepatocytes following Ras Oncogenic Insult. Cancer research 78, 5548, doi:10.1158/0008-5472.CAN-17-3964 (2018).

111 Vergara, D. et al. β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells. Frontiers in Physiology 8, doi:10.3389/fphys.2017.00544 (2017).

112 Morton, R. E., Liu, Y. & Izem, L. ApoF knockdown increases cholesteryl ester transfer to LDL and impairs cholesterol clearance in fat-fed hamsters. Journal of Lipid Research 60, 1868-1879, doi:10.1194/jlr.RA119000171 (2019).

113 Trosset, J. Y. et al. Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64, 60-67, doi:10.1002/prot.20955 (2006).

114 Zhao, Y. et al. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proceedings of the National Academy of Sciences of the United States of America 115, 1801-1806, doi:10.1073/pnas.1721160115 (2018).

115 Lewis, K. N., Rubinstein, N. D. & Buffenstein, R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. Geroscience 40, 105-121, doi:10.1007/s11357-018-0014-2 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る