リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of Regnase-1 expression with stem loop-targeting antisense oligonucleotides alleviates inflammatory diseases」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of Regnase-1 expression with stem loop-targeting antisense oligonucleotides alleviates inflammatory diseases

Tse, Ka Man Carman 京都大学 DOI:10.14989/doctor.k24192

2022.09.26

概要

Post-transcriptional regulation of gene expression plays important roles in fine-tuning inflammatory responses by regulating the stability of cytokine transcripts. Regnase-1 (also known as Zc3h12a and MCPIP1) is an RNase that restricts inflammations by degrading inflammation-related mRNAs through recognition of the stem-loop (SL) structural motifs at the 3’ untranslated regions (UTRs). Accumulating evidence suggest that reduced Regnase-1 level is associated with the pathogenesis of a number of inflammatory diseases, however, strategies aiming to specifically increase Regnase-1 availability is lacking.

The goal of this study is to develop a therapeutic means to augment Regnase-1 expression through the control of its mRNA expression, and blocking Regnase-1 self-regulation pathway comes into focus. To this end, screening of the Regnase-1 3’ UTR by luciferase assay allowed the identification of two SL motifs responsible for Regnase-1 self-regulation. Consistently, introduction of antisense phosphorodiamidate morpholino oligonucleotides (MOs) targeting the right-arm of the two SL structures abrogated the binding interaction between Regnase-1 and its mRNA, thereby increasing Regnase-1 mRNA stability and protein availability. Further in vitro analyses showed that the enhanced Regnase-1 abundance greatly reduced the expression of inflammatory transcripts targeted by this RNase, highlighting the potential usage of Regnase-1-targeting MOs (Reg1-MOs) in mitigating inflammation.

Encouraged by these findings, further experiments were performed to examine the therapeutic potentials of Reg1-MOs in vivo using mouse models. In a LPS-induced lung injury model, Reg1-MOs ameliorated the detrimental effects of LPS by limiting neutrophil entry to the lung through repressing the cytokine and chemokine expressions from the alveolar macrophages. In addition, in a chronic inflammation model where bleomycin was used to induce pulmonary fibrosis, repeated treatment of Reg1-MOs effectively decreased the fibrotic lesions in lungs collected from Reg1-MO group. Quantitative analyses of the lung tissue corroborated that Reg1-MO treatment decreased the level of transcripts involved in lung fibrosis development. Lastly, the experimental autoimmune encephalomyelitis (EAE) model, a mouse model of human multiple sclerosis (MS), was used to investigate if increased Regnase-1 availability is beneficial for the treatment of autoimmune diseases. Local treatment of Reg1-MOs resolved the EAE disease severity and demyelination, partly resulted from a decreased level of inflammatory transcripts in the central nervous system (CNS).

In summary, this study has deepened the understanding of the potential of Regnase-1 enhancing therapies in mitigating inflammations. The acquired evidence suggested that Reg1-MOs not only enhanced Regnase-1 availability, but also effectively reduced the expression of proinflammatory transcripts in both in vitro and in vivo systems. To the best of its knowledge, this is the first study showing that targeting the self-regulatory elements in the mRNA untranslated regions with antisense MOs could be beneficial to alter the mRNA stability and expression of target mRNAs.

参考文献

1. P. Anderson, Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

2. T. Glisovic, J. L. Bachorik, J. Yong, G. Dreyfuss, RNA-binding proteins and posttranscriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

3. S. Carpenter, E. P. Ricci, B. C. Mercier, M. J. Moore, K. A. Fitzgerald, Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

4. K. Matsushita, O. Takeuchi, D. M. Standley, Y. Kumagai, T. Kawagoe, T. Miyake, T. Satoh, H. Kato, T. Tsujimura, H. Nakamura, S. Akira, Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

5. H. Iwasaki, O. Takeuchi, S. Teraguchi, K. Matsushita, T. Uehata, K. Kuniyoshi, T. Satoh, T. Saitoh, M. Matsushita, D. M. Standley, S. Akira, The IB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12, 1167–1175 (2011).

6. T. Uehata, H. Iwasaki, A. Vandenbon, K. Matsushita, E. Hernandez-Cuellar, K. Kuniyoshi, T. Satoh, T. Mino, Y. Suzuki, D. M. Standley, T. Tsujimura, H. Rakugi, Y. Isaka, O. Takeuchi, S. Akira, Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

7. T. Mino, Y. Murakawa, A. Fukao, A. Vandenbon, H. H. Wessels, D. Ori, T. Uehata, S. Tartey, S. Akira, Y. Suzuki, C. G. Vinuesa, U. Ohler, D. M. Standley, M. Landthaler, T. Fujiwara, O. Takeuchi, Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

8. T. Mino, N. Iwai, M. Endo, K. Inoue, K. Akaki, F. Hia, T. Uehata, T. Emura, K. Hidaka, Y. Suzuki, D. M. Standley, M. Okada-Hatakeyama, S. Ohno, H. Sugiyama, A. Yamashita, O. Takeuchi, Translation-dependent unwinding ofstem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Res. 47, 8838–8859 (2019).

9. X. Cui, T. Mino, M. Yoshinaga, Y. Nakatsuka, F. Hia, D. Yamasoba, T. Tsujimura, K. Tomonaga, Y. Suzuki, T. Uehata, O. Takeuchi, Regnase-1 and roquin nonredundantly regulate Th1 differentiation causing cardiac inflammation and fibrosis. J. Immunol. 199, 4066–4077 (2017).

10. Y. Nakatsuka, A. Vandenbon, T. Mino, M. Yoshinaga, T. Uehata, X. Cui, A. Sato, T. Tsujimura, Y. Suzuki, A. Sato, T. Handa, K. Chin, T. Sawa, T. Hirai, O. Takeuchi, Pulmonary regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia. Mucosal Immunol. 11, 1203–1218 (2018).

11. K. Nanki, M. Fujii, M. Shimokawa, M. Matano, S. Nishikori, S. Date, A. Takano, K. Toshimitsu, Y. Ohta, S. Takahashi, S. Sugimoto, K. Ishimaru, K. Kawasaki, Y. Nagai, R. Ishii, K. Yoshida, N. Sasaki, T. Hibi, S. Ishihara, T. Kanai, T. Sato, Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

12. N. Kakiuchi, K. Yoshida, M. Uchino, T. Kihara, K. Akaki, Y. Inoue, K. Kawada, S. Nagayama, A. Yokoyama, S. Yamamoto, M. Matsuura, T. Horimatsu, T. Hirano, N. Goto, Y. Takeuchi, Y. Ochi, Y. Shiozawa, Y. Kogure, Y. Watatani, Y. Fujii, S. K. Kim, A. Kon, K. Kataoka, T. Yoshizato, M. M. Nakagawa, A. Yoda, Y. Nanya, H. Makishima, Y. Shiraishi, K. Chiba, H. Tanaka, M. Sanada, E. Sugihara, T. A. Sato, T. Maruyama, H. Miyoshi, M. M. Taketo, J. Oishi, R. Inagaki, Y. Ueda, S. Okamoto, H. Okajima, Y. Sakai, T. Sakurai, H. Haga, S. Hirota, H. Ikeuchi, H. Nakase, H. Marusawa, T. Chiba, O. Takeuchi, S. Miyano, H. Seno, S. Ogawa, Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

13. Y. Nakatsuka, A. Yaku, T. Handa, A. Vandenbon, Y. Hikichi, Y. Motomura, A. Sato, M. Yoshinaga, K. Tanizawa, K. Watanabe, T. Hirai, K. Chin, Y. Suzuki, T. Uehata, T. Mino, T. Tsujimura, K. Moro, O. Takeuchi, Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur. Respir. J. 57, 2000018 (2021).

14. J. Wei, L. Long, W. Zheng, Y. Dhungana, S. A. Lim, C. Guy, Y. Wang, Y. D. Wang, C. Qian, B. Xu, A. Kc, J. Saravia, H. Huang, J. Yu, J. G. Doench, T. L. Geiger, H. Chi, Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

15. N. Delihas, S. E. Rokita, P. Zheng, Natural antisense RNA/target RNA interactions: Possible models for antisense oligonucleotide drug design. Nat. Biotechnol. 15, 751–753 (1997).

16. W. Lima, H. Wu, S. T. Crooke, The RNase H mechanism, in Antisense Drug Technology: Principles, Strategies, and Applications (CRC Press, ed. Second Edition, 2007), pp. 65–92.

17. D. A. Melton, Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. U.S.A. 82, 144–148 (1985).

18. D. Hodges, S. T. Crooke, Inhibition ofsplicing of wild-type and mutated luciferaseadenovirus pre-mRNAs by antisense oligonucleotides. Mol. Pharmacol. 48, 905–918 (1995).

19. R. S. Finkel, E. Mercuri, B. T. Darras, A. M. Connolly, N. L. Kuntz, J. Kirschner, C. A. Chiriboga, K. Saito, L. Servais, E. Tizzano, H. Topaloglu, M. Tulinius, J. Montes, A. M. Glanzman, K. Bishop, Z. J. Zhong, S. Gheuens, C. F. Bennett, E. Schneider, W. Farwell, D. C. De Vivo, Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

20. J. S. Charleston, F. J. Schnell, J. Dworzak, C. Donoghue, S. Lewis, L. Chen, G. D. Young, A. J. Milici, J. Voss, U. DeAlwis, B. Wentworth, L. R. Rodino-Klapac, Z. Sahenk, D. Frank, J. R. Mendell, Eteplirsen treatment forDuchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology 90, e2146–e2154 (2018).

21. U. A. Ørom, S. Kauppinen, A. H. Lund, LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372, 137–141 (2006).

22. S. T. Crooke, X. H. Liang, R. M. Crooke, B. F. Baker, R. S. Geary, Antisense drug discovery and development technology considered in a pharmacological context. Biochem. Pharmacol. 189, 114196 (2021).

23. T. C. Roberts, R. Langer, M. J. A. Wood, Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

24. S. T. Crooke, B. F. Baker, R. M. Crooke, X. H. Liang, Antisense technology: An overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

25. S. M. García-Mauriño, F. Rivero-Rodríguez, A. Velázquez-Cruz, M. Hernández-Vellisca, A. Díaz-Quintana, M. A. De la Rosa, I. Díaz-Moreno, RNA binding protein regulation and cross-talk in the control of AU-rich mRNA fate. Front. Mol. Biosci. 4, (2017).

26. P. A. Morcos, Y. Li, S. Jiang, Vivo-Morpholinos: A non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 45, 613–614 (2008).

27. L. K. Johnston, C. R. Rims, S. E. Gill, J. K. McGuire, A. M. Manicone, Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am. J. Respir. Cell Mol. Biol. 47, 417–426 (2012).

28. A. Sica, A. Mantovani, Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 122, 787–795 (2012).

29. P. A. Ward, G. W. Hunninghake, Lung inflammation and fibrosis. Am. J. Respir. Critical Care Med. 157, S123–S129 (1998).

30. A. H. Gifford, M. Matsuoka, L. Y. Ghoda, R. J. Homer, R. I. Enelow, Chronic inflammation and lung fibrosis: Pleotropic syndromes but limited distinct phenotypes. Mucosal Immunol. 5, 480–484 (2012).

31. K. Shenderov, S. L. Collins, J. D. Powell, M. R. Horton, Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J. Clin. Investig. 131, e143226 (2021).

32. N. Khalil, O. Bereznay, M. Sporn, A. H. Greenberg, Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J. Exp. Med. 170, 727–737 (1989).

33. T. A. Wynn, K. M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

34. M. Sospedra, R. Martin, Immunology of multiple sclerosis. Semin. Neurol. 36, 115–127 (2016).

35. A. V. Garg, N. Amatya, K. Chen, J. A. Cruz, P. Grover, N. Whibley, H. R. Conti, G. H. Mir, T. Sirakova, E. C. Childs, T. E. Smithgall, P. S. Biswas, J. K. Kolls, M. J. McGeachy, P. E. Kolattukudy, S. L. Gaffen, MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

36. A. Ben-Nun, H. Wekerle, I. R. Cohen, The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11, 195–199 (1981).

37. D. G. Ando, J. Clayton, D. Kono, J. L. Urban, E. E. Sercarz, Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell. Immunol. 124, 132–143 (1989).

38. C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. McClanahan, R. A. Kastelein, D. J. Cua, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

39. M. A. Kroenke, T. J. Carlson, A. V. Andjelkovic, B. M. Segal, IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

40. L. Monin, J. E. Gudjonsson, E. E. Childs, N. Amatya, X. Xing, A. H. Verma, B. M. Coleman, A. V. Garg, M. Killeen, A. Mathers, N. L. Ward, S. L. Gaffen, MCPIP1/Regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol. 198, 767–775 (2017).

41. T. Yamazaki, X. O. Yang, Y. Chung, A. Fukunaga, R. Nurieva, B. Pappu, N. Martin-Orozco, H. S. Kang, L. Ma, A. D. Panopoulos, S. Craig, S. S. Watowich, A. M. Jetten, Q. Tian, C. Dong, CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

42. M. Ito, K. Komai, S. Mise-Omata, M. Iizuka-Koga, Y. Noguchi, T. Kondo, R. Sakai, K. Matsuo, T. Nakayama, O. Yoshie, H. Nakatsukasa, S. Chikuma, T. Shichita, A. Yoshimura, Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

43. M. J. C. Jordão, R. Sankowski, S. M. Brendecke, S. G. Locatelli, Y. H. Tai, T. L. Tay, E. Schramm, S. Armbruster, N. Hagemeyer, O. Groß, D. Mai, Ö. Çiçek, T. Falk, M. Kerschensteiner, D. Grün, M. Prinz, Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

44. S. E. Hickman, N. D. Kingery, T. K. Ohsumi, M. L. Borowsky, L. C. Wang, T. K. Means, J. El Khoury, The microglial sensome revealed by direct RNA sequencing. Nature Neurosci. 16, 1896–1905 (2013).

45. C. Ryckman, K. Vandal, P. Rouleau, M. Talbot, P. A. Tessier, Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170, 3233–3242 (2003).

46. T. E. Sutherland, N. Logan, D. Rückerl, A. A. Humbles, S. M. Allan, V. Papayannopoulos, B. Stockinger, R. M. Maizels, J. E. Allen, Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nature Immunol. 15, 1116–1125 (2014).

47. T. Carlson, M. Kroenke, P. Rao, T. E. Lane, B. Segal, The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 205, 811–823 (2008).

48. J. M. Rumble, A. K. Huber, G. Krishnamoorthy, A. Srinivasan, D. A. Giles, X. Zhang, L. Wang, B. M. Segal, Neutrophil-related factors as biomarkers in EAE and MS. J. Exp. Med. 212, 23–35 (2015).

49. K. Kennedy, R. Strieter, S. Kunkel, N. Lukacs, W. Karpus, Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J. Meuroimmunol. 92, 98–108 (1998).

50. S. Youssef, G. Wildbaum, N. Karin, Prevention of experimental autoimmune encephalomyelitis by MIP-1alpha and MCP-1 naked DNA vaccines. J. Autoimmun. 13, 21–29 (1999).

51. M. Soleimani, A. Soleymani, N. Seyyedirad, Elevated CSF concentration of CCL3 and CCL4 in relapsing remitting multiple sclerosis patients. J. Immunoassay Immunochem. 40, 378–385 (2019).

52. R. A. Rudick, J. C. Lee, J. Simon, E. Fisher, Significance of T2 lesions in multiple sclerosis: A 13-year longitudinal study. Ann. Neurol. 60, 236–242 (2006).

53. J. P. Mostert, M. W. Koch, C. Steen, D.J. Heersema, J. C. DeGroot, J. De Keyser, T2 lesions and rate of progression of disability in multiple sclerosis. Eur. J. Neurol. 17, 1471–1475 (2010).

54. D. C. Rockey, P. D. Bell, J. A. Hill, Fibrosis--A common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

55. G. Bagnato, S. Harari, Cellular interactions in the pathogenesis of interstitial lung diseases. Eur. Respir. Rev. 24, 102–114 (2015).

56. B. Aubé, S. A. Lévesque, A. Paré, É. Chamma, H. Kébir, R. Gorina, M. A. Lécuyer, J. I. Alvarez, Y. De Koninck, B. Engelhardt, A. Prat, D. Côté, S. Lacroix, Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J. Immunol. 193, 2438–2454 (2014).

57. E. R. Pierson, C. A. Wagner, J. M. Goverman, The contribution of neutrophils to CNS autoimmunity. Clin. Immunol. 189, 23–28 (2018).

58. J. R. Bradley, TNF-mediated inflammatory disease. J. Pathol. 214, 149–160 (2008).

59. T. Tanaka, T. Kishimoto, Targeting interleukin-6: All the way to treat autoimmune and inflammatory diseases. Int. J. Biol. Sci. 8, 1227–1236 (2012).

60. M. Yoshinaga, Y. Nakatsuka, A. Vandenbon, D. Ori, T. Uehata, T. Tsujimura, Y. Suzuki, T. Mino, O. Takeuchi, Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Rep. 19, 1614–1630 (2017).

61. S. Omiya, Y. Omori, M. Taneike, T. Murakawa, J. Ito, Y. Tanada, K. Nishida, O. Yamaguchi, T. Satoh, A. M. Shah, S. Akira, K. Otsu, Cytokine mRNA degradation in cardiomyocytes restrains sterile inflammation in pressure-overloaded hearts. Circulation 141, 667–677 (2020).

62. K. N. Gibson-Corley, A. W. Boyden, M. R. Leidinger, A. M. Lambertz, G. Ofori-Amanfo, P. W. Naumann, J. A. Goeken, N. J. Karandikar, A method for histopathological study of the multifocal nature ofspinal cord lesions in murine experimental autoimmune encephalomyelitis. PeerJ 4, e1600 (2016).

63. A. J. Thompson, B. L. Banwell, F. Barkhof, W. M. Carroll, T. Coetzee, G. Comi, J. Correale, F. Fazekas, M. Filippi, M. S. Freedman, K. Fujihara, S. L. Galetta, H. P. Hartung, L. Kappos, F. D. Lublin, R. A. Marrie, A. E. Miller, D. H. Miller, X. Montalban, E. M. Mowry, P. S. Sorensen, M. Tintoré, A. L. Traboulsee, M. Trojano, B. M. J. Uitdehaag, S. Vukusic, E. Waubant, B. G. Weinshenker, S. C. Reingold, J. A. Cohen, Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

64. H. Lian, E. Roy, H. Zheng, Protocol for primary microglial culture preparation. Bio-protocol 6, e1989 (2016).

65. G. Matute-Bello, G. Downey, B. B. Moore, S. D. Groshong, M. A. Matthay, A. S. Slutsky, W. M. Kuebler, An official american thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738 (2011).

66. T. P. Sheahan, A. C. Sims, S. R. Leist, A. Schäfer, J. Won, A. J. Brown, S. A. Montgomery, A. Hogg, D. Babusis, M. O. Clarke, J. E. Spahn, L. Bauer, S. Sellers, D. Porter, J. Y. Feng, T. Cihlar, R. Jordan, M. R. Denison, R. S. Baric, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11, 222 (2020).

67. T. Ashcroft, J. M. Simpson, V. Timbrell, Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 41, 467–470 (1988).

68. Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain, A. Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish, R. Gottardo, P. Smibert, R. Satija, Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

69. I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner, P. R. Loh, S. Raychaudhuri, Fast, sensitive and accurate integration ofsingle-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

70. H. Wickham, D. Navarro, T. L. Pedersen, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, ed. 2, 2016).

71. D. Kim, B. Langmead, S. L. Salzberg, HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

72. E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech, J. Chilton, D. Clements, N. Coraor, B. A. Grüning, A. Guerler, J. Hillman-Jackson, S. Hiltemann, V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J. Taylor, A. Nekrutenko, D. Blankenberg, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

73. P. D. Thomas, M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan, A. Narechania, PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る