リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マグノンを用いた重力波検出理論」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マグノンを用いた重力波検出理論

Ito, Asuka 神戸大学

2020.03.25

概要

In this thesis, we propose a novel method for detecting gravitational waves around GHz range with magnons. The magnons as corrective spin excitations have been studied exten- sively in the field of the cavity quantum electrodynamics both in theory and experiment. We investigate the possibility to use magnons for detecting gravitational waves. It is shown that gravitational waves can excite magnons. Therefore, gravitational waves can be probed by measuring resonance fluorescence of magnons. Moreover, in the process of deriving the interactions between gravitational waves and magnons, we reveal all possible gravitational effects on a non-relativistic fermion with a mass m in Fermi normal coordinates up to order of 1/m. Finally, we give experimental upper limits on the amplitude of continuous gravitational waves around GHz range by utilizing the experimental results of resonance fluorescence of magnons. In terms of the spectral density of gravitational waves, the upper limits at 95% C.L. are given by 7.5 × 10−19 [Hz−1/2] at 14 GHz and 8.7 × 10−18 [Hz−1/2] at 8.2 GHz, respectively.

参考文献

[1] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.

[2] K. Kuroda, W.-T. Ni, and W.-P. Pan, “Gravitational waves: Classification, Methods of detection, Sensitivities, and Sources,” Int. J. Mod. Phys., vol. D24, no. 14, p. 1530031, 2015.

[3] Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” 2018.

[4] P. A. R. Ade et al., “Joint Analysis of BICEP2/Keck Array and Planck Data,” Phys. Rev. Lett., vol. 114, p. 101301, 2015.

[5] C. R. Gwinn, T. M. Eubanks, T. Pyne, M. Birkinshaw, and D. N. Matsakis, “Quasar proper motions and low frequency gravitational waves,” Astrophys. J., vol. 485, pp. 87– 91, 1997.

[6] J. Darling, A. E. Truebenbach, and J. Paine, “Astrometric Limits on the Stochastic Gravitational Wave Background,” Astrophys. J., vol. 861, no. 2, p. 113, 2018.

[7] L. Lentati et al., “European Pulsar Timing Array Limits On An Isotropic Stochas- tic Gravitational-Wave Background,” Mon. Not. Roy. Astron. Soc., vol. 453, no. 3, pp. 2576–2598, 2015.

[8] S. Babak et al., “European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries,” Mon. Not. Roy. Astron. Soc., vol. 455, no. 2, pp. 1665–1679, 2016.

[9] Z. Arzoumanian et al., “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” Astrophys. J., vol. 859, no. 1, p. 47, 2018.

[10] J. W. Armstrong, L. Iess, P. Tortora, and B. Bertotti, “Stochastic gravitational wave background: Upper limits in the 10**-6-Hz 10**-3-Hz band,” Astrophys. J., vol. 599, pp. 806–813, 2003.

[11] P. Amaro-Seoane et al., “eLISA/NGO: Astrophysics and cosmology in the gravitational- wave millihertz regime,” GW Notes, vol. 6, pp. 4–110, 2013.

[12] N. Seto, S. Kawamura, and T. Nakamura, “Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space,” Phys. Rev. Lett., vol. 87, p. 221103, 2001.

[13] “Ligo.” https://www.ligo.caltech.edu/page/study-work.

[14] “Virgo.” http://www.virgo-gw.eu/.

[15] K. Somiya, “Detector configuration of KAGRA: The Japanese cryogenic gravitational- wave detector,” Class. Quant. Grav., vol. 29, p. 124007, 2012.

[16] M. Maggiore, “Gravitational wave experiments and early universe cosmology,” Phys. Rept., vol. 331, pp. 283–367, 2000.

[17] F. Acernese et al., “First joint Gravitational Waves search by the Auriga-Explorer- Nautilus-Virgo collaboration,” Class. Quant. Grav., vol. 25, p. 205007, 2008.

[18] A. S. Chou et al., “MHz Gravitational Wave Constraints with Decameter Michelson Interferometers,” Phys. Rev., vol. D95, no. 6, p. 063002, 2017.

[19] T. Akutsu et al., “Search for a stochastic background of 100-MHz gravitational waves with laser interferometers,” Phys. Rev. Lett., vol. 101, p. 101101, 2008.

[20] A. Ito and J. Soda, “MHz Gravitational Waves from Short-term Anisotropic Inflation,” JCAP, vol. 1604, no. 04, p. 035, 2016.

[21] S. Y. Khlebnikov and I. I. Tkachev, “Relic gravitational waves produced after preheat- ing,” Phys. Rev., vol. D56, pp. 653–660, 1997.

[22] S. Kanno and J. Soda, “Possible detection of nonclassical primordial gravitational waves with Hanbury Brown - Twiss interferometry,” 2018.

[23] G. S. Bisnovatyi-Kogan and V. N. Rudenko, “Very high frequency gravitational wave background in the universe,” Class. Quant. Grav., vol. 21, pp. 3347–3359, 2004.

[24] S. S. Seahra, C. Clarkson, and R. Maartens, “Detecting extra dimensions with gravity wave spectroscopy: the black string brane-world,” Phys. Rev. Lett., vol. 94, p. 121302, 2005.

[25] C. Clarkson and S. S. Seahra, “A gravitational wave window on extra dimensions,” Class. Quant. Grav., vol. 24, pp. F33–F40, 2007.

[26] H. Ishihara and J. Soda, “Hawking radiation from squashed Kaluza-Klein black holes: A Window to extra dimensions,” Phys. Rev., vol. D76, p. 064022, 2007.

[27] A. Ito, T. Ikeda, K. Miuchi, and J. Soda, “Probing GHz Gravitational Waves with Graviton-magnon Resonance,” 2019.

[28] B. F. Schutz, A FIRST COURSE IN GENERAL RELATIVITY. Cambridge, UK: Cambridge Univ. Pr., 1985.

[29] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master Series in Physics, Oxford University Press, 2007.

[30] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. San Francisco: W. H. Freeman, 1973.

[31] S. M. Carroll, Spacetime and Geometry. Cambridge University Press, 2019.

[32] F. K. Manasse and C. W. Misner, “Fermi Normal Coordinates and Some Basic Concepts in Differential Geometry,” J. Math. Phys., vol. 4, pp. 735–745, 1963.

[33] W.-T. Ni and M. Zimmermann, “Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer,” Phys. Rev., vol. D17, pp. 1473–1476, 1978.

[34] L. Parker, “ONE ELECTRON ATOM AS A PROBE OF SPACE-TIME CURVA- TURE,” Phys. Rev., vol. D22, pp. 1922–1934, 1980.

[35] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge Mono- graphs on Mathematical Physics, Cambridge, UK: Cambridge Univ. Press, 1984.

[36] L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particle and its nonrelativistic limit,” Phys. Rev., vol. 78, pp. 29–36, 1950.

[37] J. D. Bjorken and S. D. Drell, “Relativistic quantum fields,” 1965.

[38] X. Huang and L. Parker, “Hermiticity of the Dirac Hamiltonian in Curved Spacetime,” Phys. Rev., vol. D79, p. 024020, 2009.

[39] W. Heisenberg, “Mehrk¨orperproblem und resonanz in der quantenmechanik,” Zeitschrift fu¨r Physik, vol. 38, pp. 411–426, Jun 1926.

[40] T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev., vol. 58, pp. 1098–1113, 1940.

[41] R. Barbieri, M. Cerdonio, G. Fiorentini, and S. Vitale, “AXION TO MAGNON CON- VERSION: A SCHEME FOR THE DETECTION OF GALACTIC AXIONS,” Phys. Lett., vol. B226, pp. 357–360, 1989.

[42] N. Crescini et al., “Operation of a ferromagnetic axion haloscope at ma = 58 µeV,” Eur. Phys. J., vol. C78, no. 9, p. 703, 2018. [Erratum: Eur. Phys. J.C78,no.9,813(2018)].

[43] G. Flower, J. Bourhill, M. Goryachev, and M. E. Tobar, “Axion Wind Detection with an Improved Ferromagnetic Haloscope,” 2018.

[44] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett., vol. 38, pp. 1440–1443, 1977. [,328(1977)].

[45] S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett., vol. 40, pp. 223–226, 1978.

[46] F. Wilczek, “Problem of Strong P and T Invariance in the Presence of Instantons,” Phys. Rev. Lett., vol. 40, pp. 279–282, 1978.

[47] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett., vol. 104B, pp. 199–202, 1981.

[48] D. J. E. Marsh, “Axion Cosmology,” Phys. Rept., vol. 643, pp. 1–79, 2016.

[49] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, “Ultralight scalars as cosmological dark matter,” Phys. Rev., vol. D95, no. 4, p. 043541, 2017.

[50] A. Aoki and J. Soda, “Detecting ultralight axion dark matter wind with laser interfer- ometers,” Int. J. Mod. Phys., vol. D26, no. 07, p. 1750063, 2016.

[51] A. M. Cruise and R. M. J. Ingley, “A prototype gravitational wave detector for 100 mhz,” Classical and Quantum Gravity, vol. 23, no. 22, p. 6185, 2006.

[52] D.F.Walls and G. J. M. Ostriker, Quantum Optics. Springer, 1994.

[53] C. W. Gardiner and P. Zoller, Quantum Noise - A Handbook of Markovian and Non- Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, 2000.

[54] O. O. Soykal and M. E. Flatt´e, “Size dependence of strong coupling between nanomag- nets and photonic cavities,” Phys. Rev. B, vol. 82, p. 104413, Sep 2010.

[55] Y. Tabuchi et al., “Coherent coupling between a ferromagnetic magnon and a supercon- ducting qubit,” Science, vol. 349, no. 6246, pp. 405–408, 2015.

[56] Y. Tabuchi et al., “Quantum magnonics: The magnon meets the superconducting qubit,” Comptes Rendus Physique, vol. 17, no. 7, pp. 729 – 739, 2016. Quantum microwaves / Micro-ondes quantiques.

[57] D. Lachance-Quirion et al., “Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet,” Science Advances, vol. 3, no. 7, 2017.

[58] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cam- bridge University Press, 2009.

[59] R. M. Wald, General Relativity. Chicago, USA: Chicago Univ. Pr., 1984.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る