リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chromophore Structure in an Inactive State of a Novel Photosensor Protein Opn5L1: Resonance Raman Evidence for the Formation of a Deprotonated Adduct at the 11th Carbon Atom」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chromophore Structure in an Inactive State of a Novel Photosensor Protein Opn5L1: Resonance Raman Evidence for the Formation of a Deprotonated Adduct at the 11th Carbon Atom

Mizuno, Misao 大阪大学

2023.03.16

概要

Light is a key source of information for animals involved in a variety of physiological
activities. Opsins are photosensitive G protein-coupled receptor proteins universally found in
animals and function for both visual and nonvisual photoreception.1-2 All opsins share common
structural elements, including seven transmembrane helices and a retinal chromophore linked via
a Schiff base to a lysine residue. Recent genomic data reveal that animals possess several types
of opsin genes and these can be categorized into numerous classes according to their sequences.
Under dark conditions, most opsins bind 11-cis retinal as an inverse agonist, and
photoisomerization of 11-cis retinal to the agonist all-trans retinal results in activation of the
opsin and subsequent coupling with G protein.
Opn5 is the most recently discovered nonvisual opsin present in the human and mouse
genomes.3 Diverse subgroups of Opn5 genes have been found in a variety of animals, from fish
to primates.4-5 Opn5m is the sole Opn5 found in mammals, while non-mammalian vertebrates
contain the Opn5L1 and Opn5L2 subgroups in addition to Opn5m. Opn5m and Opn5L2 bind 11cis retinal to generate UV light-absorbing opsins.6-10 UV light irradiation of Opn5m and Opn5L2
causes retinal isomerization to the all-trans form, resulting in a visible light-absorbing form
active state. The visible light-absorbing forms are thermally stable and photoconvert back to the
UV-absorbing form, and thus Opn5m and Opn5L2 exhibit photochromism. Examination of the
ability to activate G protein showed that the UV-absorbing form is inactive and the visible lightabsorbing form is active. Non-mammalian vertebrate Opn5m and Opn5L2 directly bind 11-cis
and all-trans retinal to produce UV- and visible light-absorbing forms, respectively, whereas
mammalian Opn5 incorporates exclusively 11-cis retinal to produce the UV-absorbing form. By
contrast, Opn5L1 exclusively binds all-trans retinal and shows no photochromism. ...

この論文で使われている画像

参考文献

1.

Shichida, Y.; Matsuyama, T., Evolution of Opsins and Phototransduction. Philos. Trans.

R. Soc. B 2009, 364, 2881-2895.

2.

Koyanagi, M.; Terakita, A., Diversity of Animal Opsin-Based Pigments and Their

Optogenetic Potential. Biochim. Biophys. Acta 2014, 1837, 710-716.

3.

Tarttelin, E. E.; Bellingham, J.; Hankins, M. W.; Foster, R. G.; Lucas, R. J., Neuropsin

(Opn5): A Novel Opsin Identified in Mammalian Neural Tissue. FEBS Lett. 2003, 554, 410-416.

4.

Tomonari, S.; Migita, K.; Takagi, A.; Noji, S.; Ohuchi, H., Expression Patterns of the

Opsin 5–Related Genes in the Developing Chicken Retina. Dev. Dyn. 2008, 237, 1910-1922.

5.

Yamashita, T., Unexpected Molecular Diversity of Vertebrate Nonvisual Opsin Opn5.

Biophys. Rev. 2020, 12, 333-338.

6.

Yamashita, T.; Ohuchi, H.; Tomonari, S.; Ikeda, K.; Sakai, K.; Shichida, Y., Opn5 Is a

UV-Sensitive Bistable Pigment That Couples with Gi Subtype of G Protein. Proc. Natl. Acad.

Sci. USA 2010, 107, 22084-22089.

7.

Kojima, D.; Mori, S.; Torii, M.; Wada, A.; Morishita, R.; Fukada, Y., UV-Sensitive

Photoreceptor Protein Opn5 in Humans and Mice. PLOS ONE 2011, 6, e26388.

8.

Ohuchi, H.; Yamashita, T.; Tomonari, S.; Fujita-Yanagibayashi, S.; Sakai, K.; Noji, S.;

Shichida, Y., A Non-Mammalian Type Opsin 5 Functions Dually in the Photoreceptive and NonPhotoreceptive Organs of Birds. PLOS ONE 2012, 7, e31534.

9.

Yamashita, T.; Ono, K.; Ohuchi, H.; Yumoto, A.; Gotoh, H.; Tomonari, S.; Sakai, K.;

Fujita, H.; Imamoto, Y.; Noji, S., et al., Evolution of Mammalian Opn5 as a Specialized UVAbsorbing Pigment by a Single Amino Acid Mutation. J. Biol. Chem. 2014, 289, 3991-4000.

10.

Sato, K.; Yamashita, T.; Haruki, Y.; Ohuchi, H.; Kinoshita, M.; Shichida, Y., Two UVSensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct

Molecular Properties and Broad Distribution in the Retina and Brain. PLOS ONE 2016, 11,

e0155339.

11.

Sato, K.; Yamashita, T.; Ohuchi, H.; Takeuchi, A.; Gotoh, H.; Ono, K.; Mizuno, M.;

Mizutani, Y.; Tomonari, S.; Sakai, K., et al., Opn5L1 Is a Retinal Receptor That Behaves as a

Reverse and Self-Regenerating Photoreceptor. Nat. Commun. 2018, 9, 1255.

12.

Mathies, R. A.; Smith, S. O.; Palings, I., Determination of Retinal Chromophore

Structure in Rhodopsins. In Biological Application of Raman Spectroscopy, Spiro, T. G., Ed.;

John Wiley and Sons: New York, 1988; Vol. II, pp 59-108.

13.

Althaus, T.; Eisfeld, W.; Lohrmann, R.; Stockburger, M., Application of Raman

Spectroscopy to Retinal Proteins. Isr. J. Chem. 1995, 35, 227-251.

14.

Hamaguchi, H.-o.; Okamoto, H.; Tasumi, M.; Mukai, Y.; Koyama, Y., Transient Raman

Spectra of the All-trans and 7-, 9-, 11- and 13-Mono-cis Isomers of Retinal and the Mechanism

of the cis-trans Isomerization in the Lowest Excited Triplet State. Chem. Phys. Lett. 1984, 107,

355-359.

15.

Mathies, R.; Freedman, T. B.; Stryer, L., Resonance Raman Studies of the Conformation

of Retinal in Rhodopsin and Isorhodopsin. J. Mol. Biol. 1977, 109, 367-372.

16.

Braiman, M.; Mathies, R., Resonance Raman Evidence for an All-Trans to 13-Cis

Isomerization in the Proton-Pumping Cycle of Bacteriorhodopsin. Biochemistry 1980, 19, 54215428.

17.

Palings, I.; Pardoen, J. A.; Van den Berg, E.; Winkel, C.; Lugtenburg, J.; Mathies, R. A.,

Assignment of Fingerprint Vibrations in the Resonance Raman Spectra of Rhodopsin,

24

Isorhodopsin, and Bathorhodopsin: Implications for Chromophore Structure and Environment.

Biochemistry 1987, 26, 2544-2556.

18.

Fodor, S. P.; Pollard, W. T.; Gebhard, R.; van den Berg, E. M.; Lugtenburg, J.; Mathies,

R. A., Bacteriorhodopsin's L550 Intermediate Contains a C14-C15 S-trans-Retinal Chromophore.

Proc. Natl. Acad. Sci. USA 1988, 85, 2156-2160.

19.

Fodor, S. P. A.; Ames, J. B.; Gebhard, R.; van den Berg, E. M. M.; Stoeckenius, W.;

Lugtenburg, J.; Mathies, R. A., Chromophore Structure in Bacteriorhodopsin's N Intermediate:

Implications for the Proton-Pumping Mechanism. Biochemistry 1988, 27, 7097-7101.

20.

Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R.,

Chromophore Structure in Bacteriorhodopsin's O640 Photointermediate. Biochemistry 1983, 22,

6141-6148.

21.

Smith, S. O.; Pardoen, J. A.; Lugtenburg, J.; Mathies, R. A., Vibrational Analysis of the

13-cis-Retinal Chromophore in Dark-Adapted Bacteriorhodopsin. J. Phys. Chem. 1987, 91, 804819.

22.

Smith, S. O.; Braiman, M. S.; Myers, A. B.; Pardoen, J. A.; Courtin, J. M. L.; Winkel, C.;

Lugtenburg, J.; Mathies, R. A., Vibrational Analysis of the All-trans-Retinal Chromophore in

Light-Adapted Bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109, 3108-3125.

23.

Palings, I.; Van den Berg, E. M. M.; Lugtenburg, J.; Mathies, R. A., Complete

Assignment of the Hydrogen out-of-Plane Wagging Vibrations of Bathorhodopsin:

Chromophore Structure and Energy Storage in the Primary Photoproduct of Vision. Biochemistry

1989, 28, 1498-1507.

24.

Lohrmann, R.; Stockburger, M., Time-Resolved Resonance Raman Studies of

Bacteriorhodopsin and Its Intermediates K590 and L550: Biological Implications. J. Raman

Spectrosc. 1992, 23, 575-583.

25.

Nishimura, N.; Mizuno, M.; Kandori, H.; Mizutani, Y., Distortion and a Strong Hydrogen

Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2.

J. Phys. Chem. B 2019, 123, 3430-3440.

26.

Baasov, T.; Friedman, N.; Sheves, M., Factors Affecting the C=N Stretching in

Protonated Retinal Schiff Base: A Model Study for Bacteriorhodopsin and Visual Pigments.

Biochemistry 1987, 26, 3210-3217.

27.

Aton, B.; Doukas, A. G.; Callender, R. H.; Becher, B.; Ebrey, T. G., Resonance Raman

Studies of the Purple Membrane. Biochemistry 1977, 16, 2995-2999.

28.

Otomo, A.; Mizuno, M.; Singh, M.; Shihoya, W.; Inoue, K.; Nureki, O.; Béjà, O.;

Kandori, H.; Mizutani, Y., Resonance Raman Investigation of the Chromophore Structure of

Heliorhodopsins. J. Phys. Chem. Lett. 2018, 9, 6431-6436.

29.

Niwa, H.; Yamamura, K.-i.; Miyazaki, J.-i., Efficient Selection for High-Expression

Transfectants with a Novel Eukaryotic Vector. Gene 1991, 108, 193-199.

30.

Lugtenburg, J., The Synthesis of 13C-Labelled Retinals. Pure Appl. Chem. 1985, 57, 753762.

31.

Wada, A.; Fujioka, N.; Tanaka, Y.; Ito, M., A Highly Stereoselective Synthesis of 11ZRetinal Using Tricarbonyliron Complex. J. Org. Chem. 2000, 65, 2438-2443.

32.

Ojima, I.; Kogure, T., Reduction of Carbonyl Compounds Via Hydrosilylation. 4. Highly

Regioselective Reductions of , -Unsaturated Carbonyl Compounds. Organometallics 1982, 1,

1390-1399.

25

33.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.

R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian 16 Rev. C.01,

Wallingford, CT, 2016.

34.

Yoshida, H.; Ehara, A.; Matsuura, H., Density Functional Vibrational Analysis Using

Wavenumber-Linear Scale Factors. Chem. Phys. Lett. 2000, 325, 477-483.

35.

Gawinowicz, M. A.; Balogh-Nair, V.; Sabol, J. S.; Nakanishi, K., A Nonbleachable

Rhodopsin Analogue Formed from 11,12-Dihydroretinal. J. Am. Chem. Soc. 1977, 99, 77207721.

36.

Fujiyabu, C.; Sato, K.; Nishio, Y.; Imamoto, Y.; Ohuchi, H.; Shichida, Y.; Yamashita, T.,

Amino Acid Residue at Position 188 Determines the UV-Sensitive Bistable Property of

Vertebrate Non-Visual Opsin Opn5. Commun. Biol. 2022, 5, 63.

37.

Sakai, K.; Shichida, Y.; Imamoto, Y.; Yamashita, T., Creation of Photocyclic Vertebrate

Rhodopsin by Single Amino Acid Substitution. eLife 2022, 11, e75979.

26

TOC graphic

27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る