リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Monitoring mitochondrial translation by pulse SILAC」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Monitoring mitochondrial translation by pulse SILAC

Imami, Koshi Selbach, Matthias Ishihama, Yasushi 京都大学 DOI:10.1016/j.jbc.2022.102865

2023.02

概要

Mitochondrial ribosomes are specialized to translate the 13 membrane proteins encoded in the mitochondrial genome, which shapes the oxidative phosphorylation complexes essential for cellular energy metabolism. Despite the importance of mitochondrial translation (MT) control, it is challenging to identify and quantify the mitochondrial-encoded proteins because of their hydrophobic nature and low abundance. Here, we introduce a mass spectrometry–based proteomic method that combines biochemical isolation of mitochondria with pulse stable isotope labeling by amino acids in cell culture. Our method provides the highest protein identification rate with the shortest measurement time among currently available methods, enabling us to quantify 12 of the 13 mitochondrial-encoded proteins. We applied this method to uncover the global picture of (post-)translational regulation of both mitochondrial- and nuclear-encoded subunits of oxidative phosphorylation complexes. We found that inhibition of MT led to degradation of orphan nuclear-encoded subunits that are considered to form subcomplexes with the mitochondrial-encoded subunits. This method should be readily applicable to study MT programs in many contexts, including oxidative stress and mitochondrial disease.

この論文で使われている画像

参考文献

1. Couvillion, M. T., Soto, I. C., Shipkovenska, G., and Churchman, L. S.

(2016) Synchronized mitochondrial and cytosolic translation programs.

Nature 533, 499–503

2. Dennerlein, S., Wang, C., and Peter, R. (2017) Plasticity of mitochondrial

translation. Trends Cell Biol. 27, 712–721

3. Priesnitz, C., and Becker, T. (2018) Pathways to balance mitochondrial

translation and protein import. Genes Dev. 32, 1285–1296

4. Richter-Dennerlein, R., Oeljeklaus, S., Lorenzi, I., Ronsör, C., Bareth, B.,

Benjamin Schendzielorz, A., et al. (2016) Mitochondrial protein synthesis

adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10

5. Soto, I., Couvillion, M., Hansen, K. G., McShane, E., Conor Moran, J.,

Barrientos, A., et al. (2022) Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome

Biol. 23, 170

6. Tang, J. X., Thompson, K., Taylor, R. W., and Oláhová, M. (2020)

Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis,

import, and assembly pathways. Int. J. Mol. Sci. 21, 3820

7. Topf, U., Uszczynska-Ratajczak, B., and Chacinska, A. (2019) Mitochondrial stress-dependent regulation of cellular protein synthesis. J. Cell

Sci. 132, jcs226258

8. Isaac, R. S., McShane, E., and Churchman, L. S. (2018) The multiple levels

of mitonuclear coregulation. Annu. Rev. Genet. 52, 511–533

9. Scharfe, C., Henry, H. S. L., Neuenburg, J. K., Allen, E. A., Li, G. C.,

Klopstock, T., et al. (2009) Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput. Biol. 5,

e1000374

10. Webb, B. D., Diaz, G. A., and Prasun, P. (2020) Mitochondrial translation

defects and human disease. J. Translational Genet. Genomics 4, 71–80

11. Chomyn, A. (1996) In vivo labeling and analysis of human mitochondrial

translation products. Methods Enzymol. 264, 197–211

12. Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R., and Ryan,

M. T. (2007) Analysis of the assembly profiles for mitochondrial- and

nuclear-DNA-encoded subunits into complex I. Mol. Cell Biol. 27,

4228–4237

13. Iwasaki, S., and Ingolia, N. T. (2017) The growing toolbox for protein

synthesis studies. Trends Biochem. Sci. 42, 612–624

14. Eichelbaum, K., Winter, M., Berriel Diaz, M., Stephan, H., and Krijgsveld,

J. (2012) Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol. 30, 984–990

15. Howden, A. J. M., Geoghegan, V., Katsch, K., Efstathiou, G., Bhushan, B.,

Boutureira, O., et al. (2013) QuaNCAT: quantitating proteome dynamics

in primary cells. Nat. Methods 10, 343–346

16. Schanzenbächer, C. T., Sambandan, S., Langer, J. D., and Schuman, E. M.

(2016) Nascent proteome remodeling following homeostatic scaling at

hippocampal synapses. Neuron 92, 358–371

17. Dieterich, D. C., James Link, A., Graumann, J., Tirrell, D. A., and Schuman, E. M. (2006) Selective identification of newly synthesized proteins in

mammalian cells using bioorthogonal noncanonical amino acid tagging

(BONCAT). Proc. Natl. Acad. Sci. U. S. A. 103, 9482–9487

18. Aviner, R., Geiger, T., and Elroy-Stein, O. (2013) Novel proteomic

approach (PUNCH-P) reveals cell Cycle-specific fluctuations in mRNA

translation. Genes Dev. 27, 1834–1844

19. Forester, C. M., Zhao, Q., Phillips, N. J., Urisman, A., Chalkley, R. J., OsesPrieto, J. A., et al. (2018) Revealing nascent proteomics in signaling

pathways and cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 115,

2353–2358

20. Hünten, S., Kaller, M., Drepper, F., Oeljeklaus, S., Bonfert, T., Erhard, F.,

et al. (2015) p53-Regulated networks of protein, mRNA, miRNA, and

lncRNA expression revealed by integrated pulsed stable isotope labeling

EDITORS’ PICK: Monitoring mitochondrial translation

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

with amino acids in cell culture (pSILAC) and next generation sequencing

(NGS) analyses. Mol. Cell Proteomics 14, 2609–2629

Schäfer, J. A., Bozkurt, S., Benjamin Michaelis, J., Kevin, K., and Münch,

C. (2022) Global mitochondrial protein import proteomics reveal distinct

regulation by translation and translocation machinery. Mol. Cell 82,

435–446.e7

Tong, M., Suttapitugsakul, S., and Wu, R. (2020) Effective method for

accurate and sensitive quantitation of rapid changes of newly synthesized

proteins. Anal. Chem. 92, 10048–10057

Uchiyama, J., Ishihama, Y., and Imami, K. (2020) Quantitative nascent

proteome profiling by dual pulse labeling with O-Propargyl-Puromycin

and stable isotope labeled amino acids. J. Biochem. 169, 227–236

[preprint] Uchiyama, J., Roy, R., Wang, D. O., Yoshino, C., Mishima, Y.,

Ishihama, Y., et al. (2021) pSNAP: proteome-wide analysis of elongating

nascent polypeptide chains. bioRxiv. https://doi.org/10.1101/2021.09.22.

461445

Ebner, O. A., and Selbach, M. (2014) Quantitative proteomic analysis of

gene regulation by miR-34a and miR-34c. PLoS One 9, e92166

Imami, K., Milek, M., Bogdanow, B., Yasuda, T., Kastelic, N., Zauber, H.,

et al. (2018) Phosphorylation of the ribosomal protein RPL12/uL11 affects

translation during mitosis. Mol. Cell 72, 84–98.e9

Klann, K., Tascher, G., and Münch, C. (2020) Functional translatome

proteomics reveal converging and dose-dependent regulation by

mTORC1 and eIF2α. Mol. Cell 77, 913–925.e4

Schwanhäusser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009)

Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209

Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and

Rajewsky, N. (2008) Widespread changes in protein synthesis induced by

microRNAs. Nature 455, 58–63

Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J., and Beynon, R. J. (2009) Turnover of the human proteome: determination of

protein intracellular stability by dynamic SILAC. J. Proteome Res. 8,

104–112

Saladi, S., Boos, F., Poglitsch, M., Meyer, H., Sommer, F., Mühlhaus, T.,

et al. (2020) The NADH dehydrogenase Nde1 executes cell death after

integrating signals from metabolism and proteostasis on the mitochondrial surface. Mol. Cell 77, 189–202.e6

Bogenhagen, D. F., and Haley, J. D. (2020) Pulse-chase SILAC-based analyses

reveal selective oversynthesis and rapid turnover of mitochondrial protein

components of respiratory complexes. J. Biol. Chem. 295, 2544–2554

Morgenstern, M., Peikert, C. D., Lübbert, P., Ida, S., Klemm, C., Oliver,

A., et al. (2021) Quantitative high-confidence human mitochondrial

proteome and its dynamics in cellular context. Cell Metab. 33,

2464–2483.e18

Frezza, C., Cipolat, S., and Scorrano, L. (2007) Organelle isolation:

functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295

Marini, F., Corasolla Carregari, V., Greco, V., Ronci, M., Iavarone, F.,

Persichilli, S., et al. (2020) Exploring the HeLa dark mitochondrial proteome. Front. Cell Dev. Biol. 8, 137

Ma, J. H., Shen, S., Wang, J. J., He, Z., Poon, A., Li, J., et al. (2017) Comparative

proteomic analysis of the mitochondria-associated ER membrane (MAM) in

a long-term type 2 diabetic rodent model. Sci. Rep. 7, 1–17

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J.,

et al. (2011) Global quantification of mammalian gene expression control.

Nature 473, 337–342

Jardetzky, O. (1963) Studies on the mechanism of action of chloramphenicol. I. The conformation of chlioramphenicol in solution. J. Biol.

Chem. 238, 2498–2508

Boisvert, F.-M., Ahmad, Y., Gierli

nski, M., Charrière, F., Douglas, L.,

Scott, M., et al. (2012) A quantitative spatial proteomics analysis of

proteome turnover in human cells. Mol. Cell Proteomics 11, M111.

011429

Adachi, J., Hashiguchi, K., Nagano, M., Sato, M., Sato, A., Fukamizu, K.,

et al. (2016) Improved proteome and phosphoproteome analysis on a

cation exchanger by a combined acid and salt gradient. Anal. Chem. 88,

7899–7903

41. Soleimanpour-Lichaei, H. R., Kühl, I., Gaisne, M., Passos, J. F., Wydro, M.,

Rorbach, J., et al. (2007) mtRF1a is a human mitochondrial translation

release factor decoding the major termination codons UAA and UAG.

Mol. Cell 27, 745–757

42. Arroyo, J. D., Jourdain, A. A., Calvo, S. E., Ballarano, C. A., Doench, J. G.,

Root, D. E., et al. (2016) A genome-wide CRISPR death screen identifies

genes essential for oxidative phosphorylation. Cell Metab. 24, 875–885

43. Rooijers, K., Loayza-Puch, F., Nijtmans, L. G., and Agami, R. (2013)

Ribosome profiling reveals features of normal and disease-associated

mitochondrial translation. Nat. Commun. 4, 2886

44. Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H. J., Arnold,

S., Brandt, U., et al. (2017) The assembly pathway of mitochondrial

respiratory chain complex I. Cell Metab. 25, 128–139

45. He, J., Ford, H. C., Carroll, J., Douglas, C., Gonzales, E., Ding, S., et al.

(2018) Assembly of the membrane domain of ATP synthase in human

mitochondria. Proc. Natl. Acad. Sci. U. S. A. 115, 2988–2993

46. Signes, A., and Fernandez-Vizarra, E. (2018) Assembly of mammalian

oxidative phosphorylation complexes I-V and supercomplexes. Essays

Biochem. 62, 255–270

47. Stroud, D. A., Surgenor, E. E., Formosa, L. E., Reljic, B., Frazier, A. E.,

Dibley, M. G., et al. (2016) Accessory subunits are integral for assembly

and function of human mitochondrial complex I. Nature 538, 123–126

48. Vidoni, S., Harbour, M. E., Guerrero-Castillo, S., Signes, A., Ding, S.,

Fearnley, I. M., et al. (2017) MR-1S interacts with PET100 and PET117 in

module-based assembly of human cytochrome c oxidase. Cell Rep. 18,

1727–1738

49. Protasoni, M., Pérez-Pérez, R., Lobo-Jarne, T., Harbour, M. E., Ding, S.,

Peñas, A., et al. (2020) Respiratory supercomplexes act as a platform for

complex III-mediated maturation of human mitochondrial complexes I

and IV. EMBO J. 39, e102817

50. McShane, E., Sin, C., Zauber, H., Wells, J. N., Donnelly, N., Wang, X.,

et al. (2016) Kinetic analysis of protein stability reveals age-dependent

degradation. Cell 167, 803–815.e21

51. Taggart, J. C., Zauber, H., Selbach, M., Li, G. W., and McShane, E. (2020)

Keeping the proportions of protein complex components in check. Cell

Syst. 10, 125–132

52. Fernández-Vizarra, E., and Zeviani, M. (2015) Nuclear gene mutations as the

cause of mitochondrial complex III deficiency. Front. Genet. 6, 134

53. Gruschke, S., Kehrein, K., Römpler, K., Gröne, K., Israel, L., Imhof, A.,

et al. (2011) Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome B synthesis and assembly. J.

Cell Biol. 193, 1101–1114

54. Gruschke, S., Römpler, K., Hildenbeutel, M., Kehrein, K., Kühl, I., Bonnefoy, N., et al. (2012) The Cbp3–Cbp6 complex coordinates cytochrome

B synthesis with bc1 complex assembly in yeast mitochondria. J. Cell Biol.

199, 137–150

55. Hildenbeutel, M., Hegg, E. L., Stephan, K., Gruschke, S., Meunier, B., and

Ott, M. (2014) Assembly factors monitor sequential hemylation of cytochrome B to regulate mitochondrial translation. J. Cell Biol. 205,

511–524

56. Lavie, J., De Belvalet, H., Sonon, S., Ion, A. M., Dumon, E., Su, M., et al.

(2018) Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism. Cell Rep. 23, 2852–2863

57. Mackowiak, S. D., Zauber, H., Bielow, C., Thiel, D., Kutz, K., Calviello, L.,

et al. (2015) Extensive identification and analysis of conserved small ORFs

in animals. Genome Biol. 16, 179

58. Kristensen, A. R., Gsponer, J., and Foster, L. J. (2013) Protein synthesis

rate is the predominant regulator of protein expression during differentiation. Mol. Syst. Biol. 9, 689

59. Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased

quantitation of Escherichia coli membrane proteome using phase transfer

surfactants. Mol. Cell Proteomics 8, 2770–2777

60. Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer

surfactant-aided trypsin digestion for membrane proteome analysis. J.

Proteome Res. 7, 731–740

61. Rappsilber, J., Ishihama, Y., and Mann, M. (2003) Stop and go extraction

tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and

LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670

J. Biol. Chem. (2023) 299(2) 102865

13

EDITORS’ PICK: Monitoring mitochondrial translation

62. Ishihama, Y., Rappsilber, J., Andersen, J. S., and Mann, M. (2002)

Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A 979, 233–239

63. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide

identification rates, individualized P.p.b.-range mass accuracies and

proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–

1372

64. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and

Mann, M. (2011) Andromeda: a peptide search engine integrated into the

MaxQuant environment. J. Proteome Res. 10, 1794–1805

65. Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Martin,

V. (2002) Variance stabilization applied to microarray data calibration

and to the quantification of differential expression. Bioinformatics 18,

S96–S104

66. Zhang, X., Smits, A. H., van Tilburg, G. B. A., Ovaa, H., Huber, W., and

Vermeulen, M. (2018) Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550

14 J. Biol. Chem. (2023) 299(2) 102865

67. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al.

(2015) Limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 43, e47

68. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and

integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57

69. Moriya, Y., Shin, K., Okuda, S., Watanabe, Y., Matsumoto, M., Takami,

T., et al. (2019) The jPOST environment: an integrated proteomics data

repository and database. Nucleic Acids Res. 47, D1218–D1224

70. Okuda, S., Watanabe, Y., Moriya, Y., Shin, K., Yamamoto, T., Matsumoto, M., et al. (2017) jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 45, D1107–D1111

71. Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T. J., et al. (2021)

MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle

localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547

72. Zhu, J., Vinothkumar, K. R., and Hirst, J. (2016) Structure of mammalian

respiratory complex I. Nature 536, 354–358

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る