リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin

Abe, Tomoyuki Horisawa, Yoshihito Kikuchi, Osamu Ozawa-Umeta, Hitomi Kishimoto, Atsuhiro Katsuura, Yasuhiro Imaizumi, Atsushi Hashimoto, Tadashi Shirakawa, Kotaro Takaori-Kondo, Akifumi Yusa, Kosuke Asakura, Tadashi Kakeya, Hideaki Kanai, Masashi 京都大学 DOI:10.1016/j.ejphar.2022.175321

2022.11.15

概要

Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin β-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In β-glucuronidase (GUSB)-proficient mice, both curcumin β-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin β-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.

この論文で使われている画像

参考文献

Antony, B., Merina, B., Iyer, V.S., Judy, N., Lennertz, K., Joyal, S., 2008. A pilot cross- over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), A novel Bioenhanced preparation of curcumin. Indian J. Pharmaceut. Sci. 70,

445–449.

Asher, G.N., Xie, Y., Moaddel, R., Sanghvi, M., Dossou, K.S., Kashuba, A.D., Sandler, R.S., Hawke, R.L., 2017. Randomized pharmacokinetic crossover study comparing 2 curcumin preparations in plasma and rectal tissue of healthy human volunteers.

J. Clin. Pharmacol. 57, 185–193.

Attal, M., Richardson, P.G., Rajkumar, S.V., San-Miguel, J., Beksac, M., Spicka, I., Leleu, X., Schjesvold, F., Moreau, P., Dimopoulos, M.A., Huang, J.S., Minarik, J., Cavo, M., Prince, H.M., Mace, S., Corzo, K.P., Campana, F., Le-Guennec, S.,

Dubin, F., Anderson, K.C., group, I.-M.s., 2019. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet 394, 2096–2107.

Baeuerle, P.A., Baltimore, D., 1988. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540–546.

Banerjee, S., Wei, T., Wang, J., Lee, J.J., Gutierrez, H.L., Chapman, O., Wiley, S.E.,

Mayfield, J.E., Tandon, V., Juarez, E.F., Chavez, L., Liang, R., Sah, R.L., Costello, C.,

Mesirov, J.P., de la Vega, L., Cooper, K.L., Dixon, J.E., Xiao, J., Lei, X., 2019. Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression. Proc. Natl. Acad. Sci. U. S. A. 116, 24881–24891.

Behan, F.M., Iorio, F., Picco, G., Goncalves, E., Beaver, C.M., Migliardi, G., Santos, R., Rao, Y., Sassi, F., Pinnelli, M., Ansari, R., Harper, S., Jackson, D.A., McRae, R., Pooley, R., Wilkinson, P., van der Meer, D., Dow, D., Buser-Doepner, C., Bertotti, A., Trusolino, L., Stronach, E.A., Saez-Rodriguez, J., Yusa, K., Garnett, M.J., 2019.

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516.

Bharti, A.C., Donato, N., Singh, S., Aggarwal, B.B., 2003. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053–1062.

Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., Monneret, C., 1998. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res. 58, 1195–1201.

Dhillon, N., Aggarwal, B.B., Newman, R.A., Wolff, R.A., Kunnumakkara, A.B., Abbruzzese, J.L., Ng, C.S., Badmaev, V., Kurzrock, R., 2008. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 14, 4491–4499.

Dimopoulos, M.A., Goldschmidt, H., Niesvizky, R., Joshua, D., Chng, W.J., Oriol, A., Orlowski, R.Z., Ludwig, H., Facon, T., Hajek, R., Weisel, K., Hungria, V., Minuk, L., Feng, S., Zahlten-Kumeli, A., Kimball, A.S., Moreau, P., 2017. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 18, 1327–1337.

Dimopoulos, M.A., Lonial, S., Betts, K.A., Chen, C., Zichlin, M.L., Brun, A., Signorovitch, J.E., Makenbaeva, D., Mekan, S., Sy, O., Weisel, K., Richardson, P.G., 2018. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression- free survival from the randomized ELOQUENT-2 trial. Cancer 124, 4032–4043.

Dimopoulos, M.A., Oriol, A., Nahi, H., San-Miguel, J., Bahlis, N.J., Usmani, S.Z., Rabin, N., Orlowski, R.Z., Komarnicki, M., Suzuki, K., Plesner, T., Yoon, S.S., Ben Yehuda, D., Richardson, P.G., Goldschmidt, H., Reece, D., Lisby, S., Khokhar, N.Z., O’Rourke, L., Chiu, C., Qin, X., Guckert, M., Ahmadi, T., Moreau, P., Investigators, P., 2016. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 1319–1331.

Fang, J., Lu, J., Holmgren, A., 2005. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 280, 25284–25290.

Golombick, T., Diamond, T.H., Manoharan, A., Ramakrishna, R., 2012. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am. J. Hematol. 87, 455–460.

Greil, R., Greil-Ressler, S., Weiss, L., Schonlieb, C., Magnes, T., Radl, B., Bolger, G.T., Vcelar, B., Sordillo, P.P., 2018. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc ) in patients with locally advanced or metastatic cancer. Cancer Chemother. Pharmacol. 82, 695–706.

Gwynn, B., Lueders, K., Sands, M.S., Birkenmeier, E.H., 1998. Intracisternal A-particle element transposition into the murine beta-glucuronidase gene correlates with loss of enzyme activity: a new model for beta-glucuronidase deficiency in the C3H mouse. Mol. Cell Biol. 18, 6474–6481.

Hsu, S., Kim, M., Hernandez, L., Grajales, V., Noonan, A., Anver, M., Davidson, B., Annunziata, C.M., 2012. IKK-epsilon coordinates invasion and metastasis of ovarian cancer. Cancer Res. 72, 5494–5504.

Huang, A., Garraway, L.A., Ashworth, A., Weber, B., 2020. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38.

Jager, R., Lowery, R.P., Calvanese, A.V., Joy, J.M., Purpura, M., Wilson, J.M., 2014.

Comparative absorption of curcumin formulations. Nutr. J. 13, 11.

Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H., Hashiguchi, M., Tsujiko, K., Matsumoto, S., Ishiguro, H., Chiba, T., 2012. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 69, 65–70.

Kanai, M., Otsuka, Y., Otsuka, K., Sato, M., Nishimura, T., Mori, Y., Kawaguchi, M., Hatano, E., Kodama, Y., Matsumoto, S., Murakami, Y., Imaizumi, A., Chiba, T., Nishihira, J., Shibata, H., 2013. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother. Pharmacol. 71, 1521–1530.

Kanai, M., Yoshimura, K., Asada, M., Imaizumi, A., Suzuki, C., Matsumoto, S., Nishimura, T., Mori, Y., Masui, T., Kawaguchi, Y., Yanagihara, K., Yazumi, S., Chiba, T., Guha, S., Aggarwal, B.B., 2011. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol. 68, 157–164.

Kazandjian, D., 2016. Multiple myeloma epidemiology and survival: a unique malignancy. Semin. Oncol. 43, 676–681.

Kunihiro, A.G., Luis, P.B., Brickey, J.A., Frye, J.B., Chow, H.S., Schneider, C., Funk, J.L., 2019. Beta-glucuronidase catalyzes deconjugation and activation of curcumin- glucuronide in bone. J Nat Prod 82, 500–509.

Kunnumakkara, A.B., Guha, S., Krishnan, S., Diagaradjane, P., Gelovani, J., Aggarwal, B. B., 2007. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 67, 3853–3861.

Larasati, Y.A., Yoneda-Kato, N., Nakamae, I., Yokoyama, T., Meiyanto, E., Kato, J.Y., 2018. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 8, 2039.

LeBlanc, R., Catley, L.P., Hideshima, T., Lentzsch, S., Mitsiades, C.S., Mitsiades, N., Neuberg, D., Goloubeva, O., Pien, C.S., Adams, J., Gupta, D., Richardson, P.G., Munshi, N.C., Anderson, K.C., 2002. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 62, 4996–5000.

Li, Q., Chen, Y., Zhang, D., Grossman, J., Li, L., Khurana, N., Jiang, H., Grierson, P.M.,

Herndon, J., DeNardo, D.G., Challen, G.A., Liu, J., Ruzinova, M.B., Fields, R.C., Lim, K.H., 2019. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight 4.

Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown, M., Liu, X.S., 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554.

Marczylo, T.H., Verschoyle, R.D., Cooke, D.N., Morazzoni, P., Steward, W.P., Gescher, A. J., 2007. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother. Pharmacol. 60, 171–177.

Milacic, V., Banerjee, S., Landis-Piwowar, K.R., Sarkar, F.H., Majumdar, A.P., Dou, Q.P., 2008. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 68, 7283–7292.

Mizumoto, A., Ohashi, S., Kamada, M., Saito, T., Nakai, Y., Baba, K., Hirohashi, K., Mitani, Y., Kikuchi, O., Matsubara, J., Yamada, A., Takahashi, T., Lee, H., Okuno, Y., Kanai, M., Muto, M., 2019. Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. J. Gastroenterol. 54, 687–698.

Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B., Lander, E.S., Hirschhorn, J.N., Altshuler, D., Groop, L.C., 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273.

Moreau, P., Touzeau, C., 2015. Multiple Myeloma: from Front-Line to Relapsed Therapies. Am Soc Clin Oncol Educ Book, pp. e504–e511.

Muraoka, H., Yoshimura, C., Kawabata, R., Tsuji, S., Hashimoto, A., Ochiiwa, H., Nakagawa, F., Fujioka, Y., Matsuo, K., Ohkubo, S., 2019. Activity of TAS4464, a novel NEDD8 activating enzyme E1 inhibitor, against multiple myeloma via inactivation of nuclear factor kappaB pathways. Cancer Sci. 110, 3802–3810.

Ong, S.H., Li, Y., Koike-Yusa, H., Yusa, K., 2017. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Sci. Rep. 7, 7384.

Ozawa-Umeta, H., Kishimoto, A., Imaizumi, A., Hashimoto, T., Asakura, T., Kakeya, H., Kanai, M., 2020. Curcumin beta-D-glucuronide exhibits anti-tumor effects on oxaliplatin-resistant colon cancer with less toxicity in vivo. Cancer Sci. 111,

1785–1793.

Ozawa, H., Imaizumi, A., Sumi, Y., Hashimoto, T., Kanai, M., Makino, Y., Tsuda, T., Takahashi, N., Kakeya, H., 2017. Curcumin beta-D-glucuronide plays an important role to keep high levels of free-form curcumin in the blood. Biol. Pharm. Bull. 40, 1515–1524.

Prasad, S., Gupta, S.C., Tyagi, A.K., Aggarwal, B.B., 2014. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol. Adv. 32, 1053–1064.

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., Atalay, M., 2013. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS- dependent adaptive signaling. Antioxidants Redox Signal. 18, 1208–1246.

Ramakrishna, R., Diamond, T.H., Alexander, W., Manoharan, A., Golombick, T., 2020. Use of Curcumin in Multiple Myeloma patients intolerant of steroid therapy. Clin Case Rep 8, 739–744.

Ri, M., Iida, S., Nakashima, T., Miyazaki, H., Mori, F., Ito, A., Inagaki, A., Kusumoto, S., Ishida, T., Komatsu, H., Shiotsu, Y., Ueda, R., 2010. Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia 24, 1506–1512.

Richardson, P.G., Oriol, A., Beksac, M., Liberati, A.M., Galli, M., Schjesvold, F., Lindsay, J., Weisel, K., White, D., Facon, T., San Miguel, J., Sunami, K., O’Gorman, P., Sonneveld, P., Robak, P., Semochkin, S., Schey, S., Yu, X., Doerr, T., Bensmaine, A., Biyukov, T., Peluso, T., Zaki, M., Anderson, K., Dimopoulos, M., investigators, O.t., 2019. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with

lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 20, 781–794.

San-Miguel, J.F., Hungria, V.T., Yoon, S.S., Beksac, M., Dimopoulos, M.A., Elghandour, A., Jedrzejczak, W.W., Gunther, A., Nakorn, T.N., Siritanaratkul, N., Corradini, P., Chuncharunee, S., Lee, J.J., Schlossman, R.L., Shelekhova, T.,

Yong, K., Tan, D., Numbenjapon, T., Cavenagh, J.D., Hou, J., LeBlanc, R., Nahi, H., Qiu, L., Salwender, H., Pulini, S., Moreau, P., Warzocha, K., White, D., Blade, J., Chen, W., de la Rubia, J., Gimsing, P., Lonial, S., Kaufman, J.L., Ocio, E.M.,

Veskovski, L., Sohn, S.K., Wang, M.C., Lee, J.H., Einsele, H., Sopala, M., Corrado, C., Bengoudifa, B.R., Binlich, F., Richardson, P.G., 2014. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 15, 1195–1206.

Singh, S., Aggarwal, B.B., 1995. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J. Biol. Chem. 270, 24995–25000.

Sperker, B., Backman, J.T., Kroemer, H.K., 1997. The role of beta-glucuronidase in drug disposition and drug targeting in humans. Clin. Pharmacokinet. 33, 18–31.

Stohs, S.J., Chen, O., Ray, S.D., Ji, J., Bucci, L.R., Preuss, H.G., 2020. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review. Molecules 25.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550.

Sung, B., Kunnumakkara, A.B., Sethi, G., Anand, P., Guha, S., Aggarwal, B.B., 2009.

Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Therapeut. 8, 959–970.

Tranoy-Opalinski, I., Legigan, T., Barat, R., Clarhaut, J., Thomas, M., Renoux, B., Papot, S., 2014. beta-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur. J. Med. Chem. 74, 302–313.

Tzelepis, K., Koike-Yusa, H., De Braekeleer, E., Li, Y., Metzakopian, E., Dovey, O.M., Mupo, A., Grinkevich, V., Li, M., Mazan, M., Gozdecka, M., Ohnishi, S., Cooper, J., Patel, M., McKerrell, T., Chen, B., Domingues, A.F., Gallipoli, P., Teichmann, S., Ponstingl, H., McDermott, U., Saez-Rodriguez, J., Huntly, B.J.P., Iorio, F., Pina, C., Vassiliou, G.S., Yusa, K., 2016. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205.

Woo, J.H., Kim, Y.H., Choi, Y.J., Kim, D.G., Lee, K.S., Bae, J.H., Min, D.S., Chang, J.S.,

Jeong, Y.J., Lee, Y.H., Park, J.W., Kwon, T.K., 2003. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24, 1199–1208.

Zaidi, A., Lai, M., Cavenagh, J., 2017. Long-term stabilisation of myeloma with curcumin. BMJ Case Rep. 2017.

Zhang, Z.B., Luo, D.D., Xie, J.H., Xian, Y.F., Lai, Z.Q., Liu, Y.H., Liu, W.H., Chen, J.N.,

Lai, X.P., Lin, Z.X., Su, Z.R., 2018. Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-kappaB pathway. Front. Pharmacol. 9, 1181.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る