リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isolation and Evaluation of Biological Activities of Compounds from Cordyceps militaris (L.) Link Fruiting Body」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isolation and Evaluation of Biological Activities of Compounds from Cordyceps militaris (L.) Link Fruiting Body

Tran Ngoc Quy 広島大学

2020.03.23

概要

Cordyceps militaris (L.) is an edible fungus with fruiting body containing an excellent source of secondary metabolites. Recently, this fungus has entered a large-scale artificial cultivation in Southeast Asia countries, especially in Vietnam. C. militaris is more widely used because it contains a wide range of various bioactive compounds as well as possesses a broad spectrum of medicinal and pharmaceutical properties. However, the xanthine oxidase inhibitory and herbicidal activities of this fungus have not comprehensively examined. Besides, methanolic (MeOH) extract of C. militaris has been reported to have potential antibacterial activity but bioactive components responsible for this property have not been elaborated. Moreover, utilization of phytochemicals from fungi for nature-based alternatives for disputed commercial herbicides in agricultural production has received increasing attention. Therefore, isolation and identification of the bioactive constituents from fungal secondary metabolites warrant further efforts.

This study evaluates biological properties and identifies the chemical compounds of fruiting body of C. militaris produced in Vietnam. Different fractions of ethyl acetate (EtOAc) extract from column chromatography were examined for anti-hyperuricemic, antioxidant, antibacterial, and allelopathic activities. Besides, bioactive compounds from fractions were also identified and quantified by several modern analytical techniques such as thin layer chromatography (TLC), gas chromatography - mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), liquid chromatography-electrospray ionization - mass spectrometry (LC-ESI-MS). The thesis is divided into 6 chapters.

Chapter 1 gives a general review of the thesis. Background of dissertation, research objectives, scientific contributions, and structure of dissertation are also illustrated in this chapter.

Chapter 2 examines in vitro anti-hyperuricemic and antioxidant activities of fractions from EtOAc extract of C. militaris fruiting body. Fourteen fractions obtained from C. militaris were assessed for anti-gout and antioxidant properties. Among the test fractions, the F8 and F10 fractions possessed the most potential anti- hyperuricemia (IC50 = 62.82 μg/mL, IC50 = 68.04 μg/mL, respectively), while in both DPPH and ABTS assays, fraction F7 (IC50 = 0.40 and 0.70 mg/mL), F8 (IC50 = 0.62 and 1.03 mg/mL), and F9 (IC50 = 0.68 and 0.85 mg/mL) showed greater antioxidant capacities than other fractions. From GC-MS analysis, cordycepin (a purine nucleoside) appeared as the major component in F8, F9, and F10 fractions. Therefore, the results of fraction F8, F9, F10 and standard cordycepin demonstrated that cordycepin possesses strong xanthine oxidase inhibition capacity. Thus, this is the first study highlighted that cordycepin isolated from C. militaris played a crucial role in xanthine oxidase inhibition in vitro assay. Additionally, the presence of cordycepin and fatty acids found in F7, F8, F9 and F10 fractions suggested that these compounds are responsible for significant antioxidant property as previous reports.

Chapter 3 aims to evaluate antibacterial activity and determine the bioactive constituents from methanolic extract of C. militaris that are responsible for this activity. The methanolic extract of C. militaris was fractioned and assayed on antimicrobial property. Among the isolated fractions, F9, F11 and F12 showed the most effective inhibition against the growth of four bacterial strains including Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Proteus mirabilis. In particular, fraction F9 and F11 share the same highest inhibition zone diameter (10.17 mm) on P. mirabilis and E. coli. From GC-MS analysis, fatty acids and

fatty acid esters were detected in F9, F11 and F12 fractions. The fatty acids and their derivatives with a chain length of more than 10 carbon atoms may cause membrane-destabilizing and interfere important processes involved in cellular protection and functions of bacteria. Therefore, the presence of palmitic acid (F11, F12), 2- palmitoylglycerol (F11) and 2-oxopalmitic acid methyl ester (F9) suggested that they are responsible for potential antibacterial activity as previous studies. Additionally, cordycepin also appeared as the dominant component (58.04%) in fraction F9 and strongly inhibited the growth of E. coli and B. subtilis. However, it is necessary to check these bioactive compounds on multidrug-resistant bacteria in hospital and community to increase potential value of this medicinal fungus.

Chapter 4 investigates the allelopathic activity of C. militaris on the germination and growth of radish (Raphanus sativus) and identifies allelochemical compounds from this fungus. Besides, the uses of different extraction methods to get high yield of cordycepin have been applied. Eight fractions separated from C. militaris were examined for the germination and growth bioassays of radish. As a result, fraction CM4 showed the strongest inhibition on germination, root elongation and shoot height (IC50 = 0.078, 0.053 and 0.052 mg/mL, respectively). Detection and identification from GC-MS, HPLC and LC-ESI-MS revealed that the dominant chemical component in fraction CM4 was cordycepin (a purine nucleoside). Besides, MeOH extraction gave the maximum yield of cordycepin (6.166 mg/g DW) as compared to the use of the 100 °C temperature for 30 min and the 70 °C temperature combined with ultrasonic for 30 min (3.548 and 4.248 mg/g DW, respectively). This is the first study to reveal that cordycepin isolated from C. militaris functions as an allelochemical, effectively inhibits germination and emergence of radish and may be a promising natural source to develop plant-based herbicides.

Chapter 5 explains the herbicidal potential of C. militaris on Raphanus sativus and Echinochloa crus-galli (barnyard grass) and compares with benzoic acid to search for nature-based alternatives for disputed commercial herbicides, paraquat and glyphosate. As compared to benzoic acid in herbicidal property, cordycepin and fraction CM4 both gave strong inhibition on the germination of radish from 4.6- to 5.9-fold. Similarly, they also showed much greater suppression on the root length (3.5- to 4.5-fold) and the shoot height (3.5- to 3.8-fold) than benzoic acid. Besides, cordycepin evidenced the stronger inhibition than paraquat by 3.3- to 3.2-fold on the germination and > 4.8-fold on shoot of radish, and glyphosate by 3.3- to 3.7-fold on the germination and emergence of radish. In case of barnyard grass, fraction CM4 and cordycepin presented effective inhibition on the germination (5.7- to 8.3-fold), root length (4.9- to 5.9-fold), shoot height (7.3- to 8.6- fold) as compared to benzoic acid. Additionally, cordycepin was stronger than paraquat (1.8-fold) and glyphosate (>3.5-fold) on the germination of barnyard grass as compared to previous research. Therefore, cordycepin is more phytotoxic and has a greater inhibition on indicator plants. With respect to the mode of action, cordycepin acts as an herbicidal component reduced photosynthetic capacity, increased electrolyte leakage, lipid peroxidation, promoted total phenolic, total flavonoid and proline contents compared to benzoic acid. Therefore, cordycepin, a purine nucleoside is a potent plant growth inhibitor should encourage the development of plant-based herbicides for environmentally friendly agricultural production. However, further studies are needed to evaluate the mechanism of cordycepin as well as its synthesized derivatives compared with paraquat and glyphosate against the physiological and biochemical responses of principal weeds. Especially, investigations on cordycepin are also required to exclude any human health risks and to carefully evaluate the benefit to risk ratio of cordycepin use. This would help clarify under what conditions cordycepin could safely and effectively be used as a natural herbicide.

Finally, Chapter 6 discusses about basic mechanisms of biological assays and gives the key findings of the dissertation. This study is successful to investigate biological activities of C. militaris and to identify bioactive compounds by GC-MS, HPLC and LC-ESI-MS analyses. It was found that this fungus possesses anti- hyperuricemic, antioxidant, antibacterial and allelopathic activities. Among detected and identified components, cordycepin, a purine nucleoside analog was responsible for anti-gout and herbicidal properties. Additionally, cordycepin, fatty acid and their derivatives also contributed to treat oxidative stress and bacterial infection diseases. In case of xanthine oxidase inhibition, cordycepin has a purine ring and active sites like allopurinol, therefore, it may inhibit the enzyme xanthine oxidase by substrate competition mechanism as allopurinol. With the antibacterial activity, fatty acids and their derivatives disrupt the membrane enzyme activity, the electron transport chain, uncoupling oxidative phosphorylation and increase membrane permeability and leakage leading to inhibition of cell growth and eventually cell death. Finally, depending upon the specific mode of action, herbicides or allelochemicals may inhibit plant enzyme or biological system leading to injuring or disrupting plant growth and consequently plant death. Basically, glyphosate inhibit the enzyme 5-enolpyruvylshikimate- 3-phosphate synthase (EPSPS) that is essential for the biosynthesis of aromatic amino acids (phenylalanine, tryptophan, and tyrosine) on the shikimate pathway in plant. In the different way, paraquat interferes photosynthesis process and produces reactive oxygen species (ROS) which cause lipid peroxidation and membrane breakdown of plants. In case of cordycepin, it inhibits photosynthetic pigments, promotes electrolyte leakage, lipid peroxidation, and stimulates total phenolic, total flavonoid and proline accumulations. Findings of this study suggested that C. militaris is a promising natural source to develop foods and beverages to treat anti-gout, oxidative stress, bacterial infections and plant-based herbicides on agricultural production.

この論文で使われている画像

参考文献

Abdullahi, A., Hamzah, R., Jigam, A., Yahya, A., Kabiru, A., Muhammad, H., Sakpe, S., Adefolalu, F., Isah, M., Kolo, M., 2012. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii. J. Acute Dis. 1, 126–129. https://doi.org/10.1016/S2221-6189(13)60029-3

Achatz, M., Morris, E.K., Müller, F., Hilker, M., Rillig, M.C., 2014. Soil hypha- mediated movement of allelochemicals: Arbuscular mycorrhizae extend the bioactive zone of juglone. Funct. Ecol. 28, 1020-1029. https://doi.org/10.1111/1365-2435.12208

Adnan, M., Ashraf, S.A., Khan, S., Alshammari, E., Awadelkareem, A.M., 2017. Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CyTA - J. Food. 15, 617–621.https://doi.org/10.1080/19476337.2017.1325406

Al-Abd, N.M., Nor, Z.M., Mansor, M., Zajmi, A., Hasan, M.S., Azhar, F., Kassim, M., 2017. Phytochemical constituents, antioxidant and antibacterial activities of methanolic extract of Ardisia elliptica. Asian Pac. J. Trop. Biomed. 7, 569–576. https://doi.org/10.1016/j.apjtb.2017.05.010

Albuquerque, M.B., Dos Santos, R.C., Lima, L.M., Melo Filho, P.D.A., Nogueira, R.J.M.C., Da Camara, C.A.G., Ramos, A.D.R., 2011. Allelopathy, an alternative tool to improve cropping systems. A review. Agron. Sustain. Dev. 31, 379–395. https://doi.org/10.1051/agro/2010031

Alvionita, M., Oktavia, I., Subandi, S., Muntholib, 2019. Bioactivity of flavonoid in ethanol extract of Annona squamosa L. fruit as xanthine oxidase inhibitor. IOP Conf. Ser. Mater. Sci. Eng. 546, 1-10. https://doi.org/10.1088/1757- 899X/546/6/062003

Amist, N., Singh, N.B., 2018. Comparative effects of benzoic acid and water stress on wheat seedlings. Russ. J. Plant Physiol. 65, 709–716. https://doi.org/10.1134/s1021443718050023

Anaya, A.L.; Cruz-Ortega, R.; Waller, G.R., 2006. Metabolism and ecology of purine alkaloids. Front. Biosci. 11, 2354-2370. https://doi.org/10.2741/1975 Andriana, Y., Xuan, T.D., Quan, N. V., Quy, T.N., 2018. Allelopathic potential of

Tridax procumbens L. on radish and identification of allelochemicals.

Allelopath. J. 43, 223–238. https://doi.org/10.26651/allelo.j/2018-43-2-1143 Annett, R., Habibi, H.R., Hontela, A., 2014. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 34, 458–479. https://doi.org/10.1002/jat.2997

Aparecida, M., Campos Ventura-Camargo, B., Miyuki, M., 2013. Toxicity of herbicides: impact on aquatic and soil biota and human health. Herbic. Curr. Res. Case Stud. Use. 16, 401-443. https://doi.org/10.5772/55851

Aramwit, P., Porasuphatana, S., Srichana, T., Nakpheng, T., 2015. Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti- lung cancer activity. Nanoscale Res. Lett. 152, 1-10 https://doi.org/10.1186/s11671-015-0851-1

Azmi, S.M.N., Jamal, P., Amid, A., 2012. Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. Int. Food Res. J. 19, 159–165.

Bano, C., Amist, N., Sunaina, Singh, N.B., 2017. UV-B radiation escalate allelopathic effect of benzoic acid on Solanum lycopersicum L. Sci. Hortic. 220, 199-205. (Amsterdam). https://doi.org/10.1016/j.scienta.2017.03.052

Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S.F., Nabavi, S.M., 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 196, 44–68. https://doi.org/10.1016/j.micres.2016.12.003

Batish, D.R., Singh, H.P., Rana, N., Kohli, R.K., 2006. Assessment of allelopathic interference of Chenopodium album through its leachates, debris extracts, rhizosphere and amended soil. Arch. Agron. Soil Sci. 52, 705–715. https://doi.org/10.1080/03650340601037119

Bec , V., Jabůre , ., Demina, T., Rupprecht, A., Porter, R.K., Ježe , P., Pohl, E.E., 2007. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J. 21, 1137–1144.https://doi.org/10.1096/fj.06-7489com

Bhowmik, P.C., Inderjit, 2003. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 22, 661–671. https://doi.org/10.1016/S0261-2194(02)00242-9

Bizarro, A., Ferreira, I., o o ić, ., Griens e n, L., ousa, D., Vasconcelos, M., Lima, R., 2015. Cordyceps militaris (L.) Link fruiting body reduces the growth of a non-small cell lung cancer cell line by increasing cellular levels of p53 and p21. Molecules. 20, 13927–13940. https://doi.org/10.3390/molecules200813927

Bohnenblust, E.W., Vaudo, A.D., Egan, J.F., Mortensen, D.A., Tooker, J.F., 2016. Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environ. Toxicol. Chem. 35, 144–151. https://doi.org/10.1002/etc.3169

Bonnet, J.L., Bonnemoy, F., Dusser, M., Bohatier, J., 2007. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol. 22, 79-81.https://doi.org/10.1002/tox.20237

Borst, P., Loos, J.A., Christ, E.J., Slater, E.C., 1962. Uncoupling activity of long- chian fatty acids. BBA - Biochim. Biophys. Acta 62, 509–518. https://doi.org/10.1016/0006-3002(62)90232-9

Boyaval, P., Corre, C., Dupuis, C., Roussel, E., 1995. Effects of free fatty acids on propionic acid bacteria. Lait. 75, 17–29. https://doi.org/10.1051/lait:199512

Brown, E.G.; Konuk, M., 1994. Plant cytotoxicity of nebularine (purine riboside).Phytochemistry. 37, 1589-1592. https://doi.org/10.1016/S0031-9422(00)89572-2

Brown, R.T., 1967. Influence of naturally occurring compounds on germination and growth of Jack Pine. Ecological Society of America. 48, 542–546. https://doi.org/10.2307/1936497

Bruggen, A.H.C., He, M.M., Shin, K., Mai, V., Jeong, K.C., Finckh, M.R., Morris, J.G., 2018. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616–617, 255–268.https://doi.org/10.1016/j.scitotenv.2017.10.309

Brunharo, C.A.C.G., Hanson, B.D., 2017. Vacuolar sequestration of paraquat is involved in the resistance mechanism in Lolium perenne L. spp. multiflorum. Front. Plant Sci. 8, 1–9. https://doi.org/10.3389/fpls.2017.01485

Caihong, D., Suping, G., Wenfeng W., Xingzhong, L., 2015. Cordyceps industry in China.Mycology. 6, 121-129. https://doi/10.1080/21501203.2015.1043967

Carson, D.D., Daneo-Moore, L., 1980. Effects of fatty acids on lysis of Streptococcus faecalis. J. Bacteriol. 141, 1122–1126.

Cavaillon, J.M., 2018. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon. 149, 45-53. https://doi.org/10.1016/j.toxicon.2017.10.016 Cha, J.Y., Ahn, H.Y., Cho, Y.S., Je, J.Y., 2013. Protective effect of cordycepin- enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats. Food Chem. Toxicol. 60, 52–57. https://doi.org/10.1016/j.fct.2013.07.033

Chaicharoenaudomrung, N., Jaroonwitchawan, T., Noisa, P., 2018. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol. Vitr. 46, 113–121. https://doi.org/10.1016/j.tiv.2017.10.002

Chamberlain, N.R., Mehrtens, B.G., Xiong, Z., Kapral, F.A., Boardman, J.L., Rearick, J.I., 1991. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect. Immun. 59, 4332–4337.

Chauhan, B.S., Matloob, A., Mahajan, G., Aslam, F., Florentine, S.K., Jha, P., 2017. Emerging challenges and opportunities for education and research in weed science. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.01537

Cheema, Z.A., Farooq, M., Wahid, A., 2013. Allelopathy: Current trends and future applications. Allelopath. Curr. Trends Futur. Appl. ISBN: 978-3-642- 30594-8. https://doi.org/10.1007/978-3-642-30595-5

Chen, C.T., Li, C.C., Kao, C.H., 1991. Senescence of rice leaves XXXI. Changes of chlorophyll, protein, and polyamine contents and ethylene production during senescence of a chlorophyll-deficient mutant. J. Plant Growth Regul. 10, 201–205. https://doi.org/10.1007/BF02279335

Chen, R., Jin, C., Li, H., Liu, Z., Lu, J., Li, S., Yang, S., 2014. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep. Purif. Technol. 134, 90–99. https://doi.org/10.1016/j.seppur.2014.07.017

Chen, X., Wu, G., Huang, Z., 2013. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int. J. Biol. Macromol. 58, 18–22. https://doi.org/10.1016/j.ijbiomac.2013.03.041

Cheng, F., Cheng, Z., 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1-16. https://doi.org/10.3389/fpls.2015.01020

Chiang, S.-S., Liang, Z.C., Wang, Y.C., Liang, C.H., 2017. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid- state fermented rice by Cordyceps militaris. J. Food Compos. Anal. 60, 51–56. https://doi.org/10.1016/j.jfca.2017.03.007

Chimnoi, N., Reuk-ngam, N., Chuysinuan, P., Khlaychan, P., Khunnawutmanotham, N., Chokchaichamnankit, D., Thamniyom, W., Klayraung, S., Mahidol, C., Techasakul, S., 2018. Characterization of essential oil from Ocimum gratissimum leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. Microb. Pathog. 118, 290–300. https://doi.org/10.1016/j.micpath.2018.03.041

Chiu, C.P., Hwang, T.L., Chan, Y., El-Shazly, M., Wu, T.Y., Lo, I.W., Hsu, Y.M., Lai, K.H., Hou, M.F., Yuan, S.S., Chang, F.R., Wu, Y.C., 2016. Research and development of Cordyceps in Taiwan. Food Sci. Hum. Wellness 5, 177–185. https://doi.org/10.1016/j.fshw.2016.08.001

Cho, S.H., Kang, I.C., 2018. The inhibitory effect of cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem. Biophys. Res. Commun. 498, 431–436. https://doi.org/10.1016/j.bbrc.2018.02.188

Chou, C. H; Waller, G. R., 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6, 643-654. https://doi.org/10.1007/BF00987675

Choong, V., Ong Gaik Ai, L., Kim Suan, T., 2018. Synthesis of silver nanoparticles mediated by endophytic fungi associated with orchids and its antibacterial activity. Mater. Today Proc. 5, 22093–22100. https://doi.org/10.1016/j.matpr.2018.07.074

Cimmino, A., Andolfi, A., Evidente, A., 2014. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Nat. Prod. Commun. 9, 401–408. https://doi.org/10.1177/1934578x1400900330

Cui, F., Brosché, M., Shapiguzov, A., He, X.Q., Vainonen, J.P., Leppälä, J., Trotta, A., Kangasjärvi, S., Salojärvi, J., Kangasjärvi, J., Overmyer, K., 2019. Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radic. Biol. Med. 134, 555–566. https://doi.org/10.1016/j.freeradbiomed.2019.02.006

Cybulski, L.E., Albanesi, D., Mansilla, M.C., Altabe, S., Aguilar, P.S., De Mendoza, D., 2002. Mechanism of membrane fluidity optimization: Isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol. Microbiol. 45, 1379–1388. https://doi.org/10.1046/j.1365-2958.2002.03103.x

Das, S.K., Masuda, M., Sakurai, A., Sakakibara, M., 2010. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia. 81, 961–968. https://doi.org/10.1016/j.fitote.2010.07.010

David, R. G., Eric J. W., Leopoldo E. E., Rebacca, S.C.C., 2003. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51, 601–609. https://doi.org/10.1614/0043-1745(2003)051

Dayan, F.E., 2019. Current status and future prospects in herbicide discovery. Plants. 8, 1-18. https://doi.org/10.3390/plants8090341

Dayan, F.E., Duke, S.O., 2014. Natural compounds as next-generation herbicides. Plant Physiol. 166, 1090–1105. https://doi.org/10.1104/pp.114.239061 Dayan, F.E., Howell, J., Weidenhamer, J.D., 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60, 2107–2117. https://doi.org/10.1093/jxb/erp082

De, S.K., Chakraborty, A., 2019. Interaction of monomeric and self-assembled aromatic amino acids with model membranes. Chem Commun (Camb). 55, 15109–15112. https://doi.org/10.1039/c9cc08495a

Dennis, P.G., Kukulies, T., Forstner, C., Orton, T.G., Pattison, A.B., 2018. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-20589-6

Desbois, A.P., Smith, V.J., 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642. https://doi.org/10.1007/s00253-009-2355-3

Dhouioui, M., Boulila, A., Jemli, M., Schiets, F., Casabianca, H., Zina, M.S., 2016. Fatty acids composition and antibacterial activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing wild in Tunisia. J. Oleo Sci. 65, 655–661. https://doi.org/10.5650/jos.ess16001

Dill, G.M., 2005. Glyphosate-resistant crops: History, status and future. Pest Manag. Sci. 61, 219–224. https://doi.org/10.1002/ps.1008

Dinis-Oliveira, R.J., Duarte, J.A., Sánchez-Navarro, A., Remião, F., Bastos, M.L., Carvalho, F., 2008. Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Crit. Rev. Toxicol. 38, 13–71. https://doi.org/10.1080/10408440701669959

Dong, C.H., Yang, T., Lian, T., 2014. A Comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms.16, 485–495. https://doi.org/10.1615/IntJMedMushrooms.v16.i5.70

Dong, J.Z., Wang, S.H., Ai, X.R., Yao, L., Sun, Z.W., Lei, C., Wang, Y., Wang, Q., 2013. Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J. Funct. Foods. 5, 1450–1455. https://doi.org/10.1016/j.jff.2013.06.002

Dong, Y., Huang, H., Zhao, M., Sun-Waterhouse, D., Lin, L., Xiao, C., 2016. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J. Funct. Foods. 24, 26–36.https://doi.org/10.1016/j.jff.2016.03.021

Dor, E., Galili, S., Smirnov, E., Hacham, Y., Amir, R., Hershenhorn, J., 2017. The effects of herbicides targeting aromatic and branched chain amino acid biosynthesis support the presence of functional pathways in broomrape. Front. Plant Sci. 8, 1–15. https://doi.org/10.3389/fpls.2017.00707

Duke, S.O., 1990. Overview of herbicide mechanisms of action. Environ. Health Perspect. 87, 263–271. https://doi.org/10.1289/ehp.9087263

Duke, S.O., Romagni, J.G., Dayan, F.E., 2000. Natural products as sources for new mechanisms of herbicidal action. Crop Prot. 19, 583–589. https://doi.org/10.1016/S0261-2194(00)00076-4

Duong, N.T., Vinh, P.D., Thuong, P.T., Hoai, N.T., Thanh, L.N., Bach, T.T., Nam, N.H., Anh, N.H., 2017. Xanthine oxidase inhibitors from Archidendron clypearia (Jack.) I.C. Nielsen: Results from systematic screening of Vietnamese medicinal plants. Asian Pac. J. Trop. Med. 10, 549–556. https://doi.org/10.1016/j.apjtm.2017.06.002

Dzotam, J.K., Touani, F.K., Kuete, V., 2016. Antibacterial activities of the methanol extracts of Canarium schweinfurthii and four other Cameroonian dietary plants against multi-drug resistant Gram-negative bacteria. Saudi J. Biol. Sci. 23, 565–570. https://doi.org/10.1016/j.sjbs.2015.06.006

Egan, J.F., Bohnenblust, E., Goslee, S., Mortensen, D., Tooker, J., 2014. Herbicide drift can affect plant and arthropod communities. Agric. Ecosyst. Environ. 185, 77–87. https://doi.org/10.1016/j.agee.2013.12.017

Egley, G., Williams, R., 1978. Glyphosate and paraquat effects on weed seed germination and seedling emergence. Weed Sci. 26, 249-251. https://doi.org/10.1017/S004317450004981X

Eleazu, C.O., 2016. Characterization of the natural products in cocoyam (Colocasia esculenta) using GC-MS. Pharm. Biol. 54, 2880–2885. https://doi.org/10.1080/13880209.2016.1190383

Elshaghabee, F.M.F., Rokana, N., Gulhane, R.D., Sharma, C., Panwar, H., 2017. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 8, 1–15. https://doi.org/10.3389/fmicb.2017.01490

Elzaawely, A.A., Xuan, T.D., Tawata, S., 2007. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity. Food Chem. 103, 486–494. https://doi.org/10.1016/j.foodchem.2006.08.025

Farooq, M.A., Ali, S., Hameed, A., Bharwana, S.A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., Iqbal, Z., 2016. Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African J. Bot. 104, 61–68. https://doi.org/10.1016/j.sajb.2015.11.006

Feng, Y.J., Zhu, Y., Li, Y.M., Li, J., Sun, Y.F., Shen, H.T., Wang, A.Y., Lin, Z.P., Zhu, J.B., 2018. Effect of strain separated parts, solid-state substrates and light condition on yield and bioactive compounds of Cordyceps militaris fruiting bodies. CYTA - J. Food. 16, 916–922. https://doi.org/10.1080/19476337.2018.1498130

Fengyao, W., Hui, Y., Xiaoning, M., Junqing, J., Guozheng, Z., Xijie, G., Zhongzheng, G., 2011. Structural characterization and antioxidant activity of purified polysaccharide from cultured Cordyceps militaris. African J. Microbiol. Res. 5, 2743–2751. https://doi.org/10.5897/AJMR11.548

Fernández-Escalada, M., Zulet-González, A., Gil-Monreal, M., Royuela, M., Zabalza, A., 2019. Physiological performance of glyphosate and imazamox mixtures on Amaranthus palmeri sensitive and resistant to glyphosate. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-54642-9

Forouzesh, A., Zand, E., Soufizadeh, S., Samadi F. S., 2015. Classification of herbicides according to chemical family for weed resistance management strategies-an update. Weed Res. 55, 334–358. https://doi.org/10.1111/wre.12153

Freitas, H.R., Ferreira, G.D.C., Trevenzoli, I.H., Oliveira, K.D.J., Reis, R.A.D.M., 2017. Fatty acids, antioxidants and physical activity in brain aging. Nutrients. 9, 1–23. https://doi.org/10.3390/nu9111263

Friedman, J.; Waller, G.R., 1983. Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J. Chem. Ecol. 9, 1099-1106. https://doi.org/10.1007/BF00982214

Frimpong, J.O., Ofori, E.S.K., Yeboah, S., Marri, D., Offei, B.K., Apaatah, F., Sintim, J.O., Ofori-Ayeh, E., Osae, M., 2018. Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. Ecotoxicol. Environ. Saf. 156, 205–215. https://doi.org/10.1016/j.ecoenv.2018.03.034

Fukuta, M., Xuan, T.D., Deba, F., Tawata, S., Khanh, T.D., Chung, I.M., 2007. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J. Plant Interact. 2, 245–251. https://doi.org/10.1080/17429140701713811

Gao, Y., Liu, W., Wang, X., Yang, L., Han, S., Chen, S., Strasser, R.J., Valverde, B.E., Qiang, S., 2018. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiol. Biochem. 128, 1–12. https://doi.org/10.1016/j.plaphy.2018.04.037

Gawlik-Dzi i , U., Dzi i , D., Świeca, M., Nowak, R., 2017. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem. 225, 138–145. https://doi.org/10.1016/j.foodchem.2017.01.016

Gomes, M.P., Garcia, Q.S., Barreto, L.C., Pimenta, L.P.S., Matheus, M.T., Figueredo, C.C., 2017. Allelopathy: An overview from micro-to macroscopic organisms, from cells to environments, and the perspectives in a climate- changing world. Biol. 72, 113–129. https://doi.org/10.1515/biolog-2017-0019 Gonzalo, L. P., María, S.V., Leandro, A.M., 2011. Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. Herbic. Environ.16, 343-368.https://doi.org/10.5772/12877

Greenway, D.L.A., Dyke, K.G.H., 1979. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J. Gen. Microbiol. 115, 233–245. https://doi.org/10.1099/00221287-115-1-233

Grzesiu , A., Dębs i , ., nińs a , K., Kocz oda j, D., zwed, ., or bowicz, M., 2018. Effect of root-zone glyphosate exposure on growth and anthocyanins content of radish seedlings. Acta Sci. Pol. Hortorum Cultus. 17, 3–10. https://doi.org/10.24326/asphc.2018.2.1

Hagner, M., Mikola, J., Saloniemi, I., Saikkonen, K., Helander, M., 2019. Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Sci. Rep. 9, 1–13. https://doi.org/10.1038/s41598-019-44988-5

Hajek, A.E., St Leger, R.J., 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. https://doi.org/10.1146/annurev.ento.39.1.293

Hajji, K., Mteyrek, A., Sun, J., Cassar, M., Mezghani, S., Leprince, J., Vaudry, D., Masmoudi-Kouki, O., Birman, S., 2019. Neuroprotective effects of PACAP against paraquat-induced oxidative stress in the Drosophila central nervous system. Hum. Mol. Genet. 28, 1905–1918. https://doi.org/10.1093/hmg/ddz031

Hamel, F.G., 2009. Preliminary report: inhibition of cellular proteasome activity by free fatty acids. Metabolism. 58, 1047–1049. https://doi.org/10.1016/j.metabol.2009.04.005

Havlik, J., de la Huebra, R.G., Hejtmankova, K., Fernandez, J., Simonova, J., Melich, M., Rada, V., 2010. Xanthine oxidase inhibitory properties of Czech medicinal plants. J. Ethnopharmacol. 132, 461–465. https://doi.org/10.1016/j.jep.2010.08.044

He, F., Wu, C., Li, P., Li, N., Zhang, D., Zhu, Q., Ren, W., Peng, Y., 2018. Functions and signaling pathways of amino acids in intestinal inflammation. Biomed Res. Int.3, 1-13. https://doi.org/10.1155/2018/9171905

Hodaei, M., Rahimmalek, M., Arzani, A., Talebi, M., 2018. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crops Prod. 120, 295–304. https://doi.org/10.1016/j.indcrop.2018.04.073

Holliday, J.C., Cleaver, M., 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. Int. J. Med. Mushrooms. 10, 219–234. https://doi.org/10.1615/IntJMedMushr.v10.i3.30. Hu, Z., Lee, C. Il., Shah, V.K., Oh, E.H., Han, J.Y., Bae, J.R., Lee, K., Chong, M.S., Hong, J.T., Oh, K.W., 2013. Cordycepin increases nonrapid eye movement sleep via adenosine receptors in rats. Evidence-based Complement. Altern. Med. 2013, 8. https://doi.org/10.1155/2013/840134.

Huang, C.B., Alimova, Y., Myers, T.M., Ebersole, J.L., 2011. Short- and medium- chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 56, 650–654. https://doi.org/10.1016/j.archoralbio.2011.01.011

Huang, F., Li, W., Xu, H., Qin, H., He, Z.G., 2019. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS One 14, 1–19. https://doi.org/10.1371/journal.pone.0218449

Huang, J., Silva, E.N., Shen, Z., Jiang, B., Lu, H., 2012. Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical propertiesof cogongrass (Imperata cylindrical L.). Plant Omics. 5, 177–183.

Huang, S., Liu, H., Sun, Y., Chen, J., Li, X., Xu, J., Hu, Y., Li, Y., Deng, Z., Zhong, S., 2018. An effective and convenient synthesis of cordycepin from adenosine. Chem. Pap. 72, 149-160. https://doi.org/10.1007/s11696-017-0266-9

Huang, Y., Zhan, H., Bhatt, P., Chen, S., 2019. Paraquat degradation from contaminated environments: Current achievements and perspectives. Front. Microbiol. 10, 1–9. https://doi.org/10.3389/fmicb.2019.01754

Hui, M.Y., Wang, B. Sen, Shiow, C.H., Duh, P. D., 2006. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 54, 3132–3138. https://doi.org/10.1021/jf053111w

Hulpia, F., Mabille, D., Campagnaro, G.D., Schumann, G., Maes, L., Roditi, I., Hofer, A., Koning, H.P., Caljon, G., Calenbergh, S. V., 2019. Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat lare-stage sleeping sickness. Nat. Commun. 1–11. https://doi.org/10.1038/s41467-019-13522-6.

Hur, H., 2008. Chemical Ingredients of Cordyceps militaris. Mycobiology 36, 233–5. https://doi.org/10.4489/MYCO.2008.36.4.233

Hussain, M., Farooq, M., Basra, S.M.A., Lee, D.J., 2013. Application of moringa allelopathy in crop sciences. Allelopath. Curr. Trends Futur. Appl. 20, 469-484. https://doi.org/10.1007/978-3-642-30595-5_20

Ibrahim, M., Ahmed, N., Ullah, F., Shinwari, Z.K., Bano, A., 2013. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed. Toxicol. Ind. Health. 32, 614–624. https://doi.org/10.1177/0748233713505125

Idrees, H., Javaid, A., 2008. Screening of some pathogenic fungi for their herbicidal potential against parthenium weed. Pak. J. Phytopathol. 20, 150- 155.

Jaballah, S. B., Zribi, I., Haouala, R., 2017. Physiological and biochemical responses of two lentil varieties to chickpea (Cicer arietinum L.) aqueous extracts. Sci. Hortic. (Amsterdam). 225, 74–80. https://doi.org/10.1016/j.scienta.2017.06.069

Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T., Shirtliff, M.E., 2008. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59. https://doi.org/10.1128/CMR.00019-07

Jeong, J.W., Jin, C.Y., Kim, G.Y., Lee, J.D., Park, C., Kim, G. Do, Kim, W.J., Jung, W.K., Seo, S.K., Choi, I.W., Choi, Y.H., 2010. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int. Immunopharmacol. 10, 1580–1586. https://doi.org/10.1016/j.intimp.2010.09.011

Jiang, Q., Lou, Z., Wang, H., Chen, C., 2019. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. J. Microbiol. 57, 288–297. https://doi.org/10.1007/s12275-019- 8113-z

Jiang, Y., Wong, J.H., Fu, M., Ng, T.B., Liu, Z.K., Wang, C.R., Li, N., Qiao, W.T., Wen, T.Y., Liu, F., 2011. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine. 18, 189–193. https://doi.org/10.1016/j.phymed.2010.04.010

Jin, Y., Meng, X., Qiu, Z., Su, Y., Yu, P., Qu, P., 2018. Anti-tumor and anti- metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J. Biol. Sci. 25, 991–995. https://doi.org/10.1016/j.sjbs.2018.05.016

Joshi, M., Sagar, A., Kanwar, S., Singh, S., 2019. Anticancer, antibacterial and antioxidant activities of Cordyceps militaris. Indian J. Exp. Biol. 57, 15–20.

Jugulam, M., Shyam, C., 2019. Non-target-site resistance to herbicides: Recent developments. Plants (Basel). 8, 1-16. https://doi.org/10.3390/plants8100417 Kadariya, J., Smith, T.C., Thapaliya, D., 2014. Staphylococcus aureus and Staphylococcal food-borne disease: An ongoing challenge in public health. Biomed Res. Int. 2014. 1-9 https://doi.org/10.1155/2014/827965

Kakian, F., Shahini Shams Abadi, M., Gholipour, A., Fadaie, M., Zamanzad, B., Khairi, S., Parchami, S., Damavandi, M.S., 2019. Evaluating the prevalence of virulence genes of Escherichia coli in patients affected by urinary tract infection. Gene Reports. 16, 1-4.https://doi.org/10.1016/j.genrep.2019.100433

Kalra, S., Jena, G., Tikoo, K., Mukhopadhyay, A.K., 2007. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8- mercaptopurine and 2-amino- 6-purine thiol. BMC Biochem. 8, 1–11. https://doi.org/10.1186/1471-2091-8- 8

Kang, N., Lee, H.H., Park, I., Seo, Y.S., 2017. Development of high cordycepin- producing Cordyceps militaris strains. Mycobiology. 45, 31–38. https://doi.org/10.5941/MYCO.2017.45.1.31

Kapoor, N., Saxena, S., 2016. Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species. 3 Biotech. 6, 1-6.https://doi.org/10.1007/s13205-016-0569-5

Kapoor, N., Saxena, S., 2014. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae. Appl. Biochem. Biotechnol. 173, 1360–1374. https://doi.org/10.1007/s12010-014-0927-x

Karimi, E., Ze Jaafar, H., Ghasemzadeh, A., Ebrahimi, M., 2015. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res. 48, 1–6. https://doi.org/10.1186/0717-6287-48-9

Kaur, H., Inderjit, Kaushik, S., 2005. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol. Biochem. 43, 77-81. https://doi.org/10.1016/j.plaphy.2004.12.007

Kaya, C., Ashraf, M., Dikilitas, M., Tuna, A.L., 2013. Alleviation of salt stress- induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients - A field trial. Aust. J. Crop Sci. 7, 249–254.

Kenny, J.G., Ward, D., Josefsson, E., Jonsson, I.M., Hinds, J., Rees, H.H., Lindsay, J.A., Tarkowski, A., Horsburgh, M.J., 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One. 4, 1-29.https://doi.org/10.1371/journal.pone.0004344

Khan, I.T., Nadeem, M., Imran, M., Ajmal, M., Ali, S., 2018. Antioxidant activity, fatty acids characterization and oxidative stability of Gouda cheese fortified with mango (Mangifera indica L.) kernel fat. J. Food Sci. Technol. 55, 992– 1002. https://doi.org/10.1007/s13197-017-3012-y

Khanh, T.D., Cong, L.C., Xuan, T.D., Lee, S.J., Kong, D.S., Chung, I.M., 2008. Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituents. Weed Sci. 56, 119–127. https://doi.org/10.1614/ws- 07-102.1

Kim, H.G., Song, H., Yoon, D.H., Song, B.W., Park, S.M., Sung, G.H., Cho, J.Y., Park, H. Il, Choi, S., Song, W.O., Hwang, K.C., Kim, T.W., 2010. Cordycepspruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway. J. Ethnopharmacol. 128, 342–351. https://doi.org/10.1016/j.jep.2010.01.049

Kim, S.B., Ahn, B., Kim, M., Ji, H.J., Shin, S.K., Hong, I.P., Kim, C.Y., Hwang, B.Y., Lee, M.K., 2014. Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. J. Ethnopharmacol. 151, 478–484. https://doi.org/10.1016/j.jep.2013.10.064

Kim, Y.J., Park, K.H., Park, D.A., Park, J., Bang, B.W., Lee, S.S., Lee, E.J., Lee, H.J., Hong, S.K., Kim, Y.R., 2019. Guideline for the antibiotic use in acute gastroenteritis. Infect. Chemother. 51, 217–243. https://doi.org/10.3947/ic.2019.51.2.217

Kniss, A.R., 2017. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 1–7. https://doi.org/10.1038/ncomms14865

Koh, J.H., Kim, K.M., Kim, J.M., Song, J.C., Suh, H.J., 2003. Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol. Pharm. Bulltin 26, 691–694. https://doi.org/10.1248/bpb.26.84

Kong, C.H., Xuan, T.D., Khanh, T.D., Tran, H.D., Trung, N.T., 2019. Allelochemicals and signaling chemicals in plants. Molecules. 24, 1-19. https://doi.org/10.3390/molecules24152737

Kongtip, P., Nankongnab, N., Phupancharoensuk, R., Palarach, C., Sujirarat, D., Sangprasert, S., Sermsuk, M., Sawattrakool, N., Woskie, S.R., 2017. Glyphosate and paraquat in maternal and fetal serums in Thai women. J. Agromedicine. 22, 282–289. https://doi.org/10.1080/1059924X.2017.1319315

Kopalli, S.R., Cha, K.M., Lee, S.H., Hwang, S.Y., Lee, Y.J., Koppula, S., Kim, S.K., 2019. Cordycepin, an active constituent of nutrient powerhouse and potential potential medicinal mushroom Cordyceps militaris Linn., Ameliorates Age-related testicular dysfunction in rats. Nutrients. 11, 1-24. https://doi.org/10.3390/nu11040906

Kostić, D.A., Dimitrijević, D. ., tojano ić, G. ., Palić, I.R., Dorde i ć, A. ., Ickovski, J.D., 2015. Xanthine oxidase: Isolation, assays of activity, and inhibition. J. Chem. 2015, 1-8. https://doi.org/10.1155/2015/294858

Kraus, E.C., Stout, M.J., 2019. Direct and indirect effects of herbicides on insect herbivores in rice, Oryza sativa. Sci. Rep. 9, 1–13. https://doi.org/10.1038/s41598-019-43361-w

Kurihara, H., Goto, Y., Aida, M., Hosokawa, M., Takahashi, K., 1999. Antibacterial activity against cariogenic bacteria and inhibition of insoluble glucan production by free fatty acids obtained from dried Gloiopeltis furcata. Fish. Sci. 65, 129–132. https://doi.org/10.2331/fishsci.65.129

Kwiecińs a -Piróg, J., Skowron, K., Zniszczol, K., Gospodarek, E., 2013. The assessment of Proteus mirabilis susceptibility to ceftazidime and ciprofloxacin and the impact of these antibiotics at subinhibitory concentrations on Proteus mirabilis biofilms. Biomed Res. Int. 2013, 1-8. https://doi.org/10.1155/2013/930876

Ladhari, A., Omezzine, F., Haouala, R., 2014. The impact of Tunisian Capparidaceae species on cytological, physiological and biochemical mechanisms in lettuce. South African J. Bot. 93, 222–230. https://doi.org/10.1016/j.sajb.2014.04.014

Lebecque, S., Lins, L., Dayan, F.E., Fauconnier, M.L., Deleu, M., 2019. Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane. Front. Plant Sci. 10, 1–11. https://doi.org/10.3389/fpls.2019.00329

Lee, H.J., Burger, P., Vogel, M., Friese, K., Brüning, A., 2012. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest. New Drugs. 30, 1917–1925. https://doi.org/10.1007/s10637- 012-9859-x

Lee, S.K., Lee, Ju Hun, Kim, H.R., Chun, Y., Lee, Ja Hyun, Yoo, H.Y., Park, C., Kim, S.W., 2019. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules.9, 1-11. https://doi.org/10.3390/biom9090461

Lei Huang, Qizhang Li, Yiyuan Chen, X.W. and X.Z., 2009. Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. African J. Microbiol. Res. 3, 957-961.

Lei, J., Wei, Y., Song, P., Li, Y., Zhang, T., Feng, Q., Xu, G., 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 818, 110–114.https://doi.org/10.1016/j.ejphar.2017.10.029

Li, J., Mu, J., Bai, J., Fu, F., Zou, T., An, F., Zhang, J., Jing, H., Wang, Q., Li, Z., Yang, S., Zuo, J., 2013. Paraquat resistant 1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol. 162, 470–483. https://doi.org/10.1104/pp.113.213892

Li, S.P., Li, P., Dong, T.T.X., Tsim, K.W.K., 2001. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine. 8, 207–212. https://doi.org/10.1078/0944-7113-00030

Lin, K.W., Chen, Y.T., Yang, S.C., Wei, B.L., Hung, C.F., Lin, C.N., 2013. Xanthine oxidase inhibitory lanostanoids from Ganoderma tsugae. Fitoterapia. 89, 231–238. https://doi.org/10.1016/j.fitote.2013.06.006

Lin, S., Zhang, G., Liao, Y., Pan, J., Gong, D., 2015. Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure-activity relationships. J. Agric. Food Chem. 63, 7784–7794. https://doi.org/10.1021/acs.jafc.5b03386

Liu, F., Deng, C., Cao, W., Zeng, G., Deng, X., Zhou, Y., 2017. Phytochemicals of Pogostemon cablin (Blanco) Benth. aqueous extract: Their xanthine oxidase inhibitory activities. Biomed. Pharmacother. 89, 544–548. https://doi.org/10.1016/j.biopha.2017.01.040

Liu, J.Y., Feng, C.P., Li, X., Chang, M.C., Meng, J.L., Xu, L.J., 2016. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int. J. Biol. Macromol. 86, 594–598. https://doi.org/10.1016/j.ijbiomac.2016.02.009

Liu, L., Zhao, J., Guan, L., 2013. Tracking photosynthetic injury of paraquat- treated crop using chlorophyll fluorescence from hyperspectral data. Eur. J. Remote Sens. 46, 459–473. https://doi.org/10.5721/EuJRS20134627

Liu, Q., Meng, X., Li, Y., Zhao, C.N., Tang, G.Y., Li, H. Bin, 2017. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 18, 1–62. https://doi.org/10.3390/ijms18061283

Lou, H.W., Zhao, Y., Tang, H.B., Ye, Z.W., Wei, T., Lin, J.F., Guo, L.Q., 2019. Transcriptome analysis of Cordyceps militaris reveals genes associated with carotenoid synthesis and identification of the function of the Cmtns gene. Front. Microbiol. 10, 1–10. https://doi.org/10.3389/fmicb.2019.02105 Lovett, J. V., Ryuntyu, M.Y., Liu, D.L., 1989. Allelopathy, chemical communication, and plant defense. J. Chem. Ecol. 15, 1193–1202. https://doi.org/10.1007/BF01014822

Löfgren, N.; Lüning, B.; Hedström, H.; Burris, R.H., 1954. The isolation of nebularine and the determination of its structure. Acta Chem. Scand. 8, 670- 680. https://doi.org/10.3891/acta.chem.scand.08-0670

Lu, L., Yang, C., Qing, L., Ning, X., Mengzhou, Z., Bing, G., Chao, W., Yong, S., 2018. Fermenting liquid vinegar with higher taste, flavor and healthy value by using discarded Cordyceps militaris solid culture medium. LWT-Food Sci Technol. 98, 654-660.pdf.

Lu, Y., Zhi, Y., Miyakawa, T., Tanokura, M., 2019. Metabolic profiling of natural and cultured Cordyceps by NMR spectroscopy. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-44154-x

Ma, L., Zhang, S., Du, M., 2015. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr. Res. 35, 431–439. https://doi.org/10.1016/j.nutres.2015.04.011

Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Cutler, H. G., 2004. Allelopathy: Chemistry and mode of action of allelochemicals. CRC, 2004, 217- 227.https://doi.org/10.1002/cbf.1140

Maeda, H., Dudareva, N., 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105. https://doi.org/10.1146/annurev-arplant-042811-105439

Martinez, D.A., Loening, U.E., Graham, M.C., 2018. Impacts of glyphosate-based herbicides on disease resistance and health of crops: a review. Environ. Sci. Eur. 30, 1-14. https://doi.org/10.1186/s12302-018-0131-7

Masuda, M., Hatashita, M., Fujihara, S., Suzuki, Y., Sakurai, A., 2015. Simple and efficient isolation of cordycepin from culture broth of a Cordyceps militaris mutant. J. Biosci. Bioeng. 120, 732–735. https://doi.org/10.1016/j.jbiosc.2015.04.008

McGaw, L.J., Jäger, A.K., Van Staden, J., 2002. Antibacterial effects of fatty acids and related compounds from plants. South African J. Bot. 68, 417–423. https://doi.org/10.1016/S0254-6299(15)30367-7

Mesnage, R., Antoniou, M.N., 2017. Facts and fallacies in the debate on glyphosate toxicity. Front. Public Heal. 5, 1–7. https://doi.org/10.3389/fpubh.2017.00316

Mikulic-Petkovsek, M., Samoticha, J., Eler, K., Stampar, F., Veberic, R., 2015. Traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity. J. Agric. Food Chem. 63, 1477–1487. https://doi.org/10.1021/jf506005b

Minh, T.N., Xuan, T.D., Tran, H.D., Van, T.M., Andriana, Y., Khanh, T.D., Van Quan, N., Ahmad, A., 2019. Isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica. Molecules. 24, 1-15 https://doi.org/10.3390/molecules24050889

Mirani, Z.A., Naz, S., Khan, F., Aziz, M., Asadullah, Khan, M.N., Khan, S.I., 2017. Antibacterial fatty acids destabilize hydrophobic and multicellular aggregates of biofilm in S. aureus. J. Antibiot. (Tokyo). 70, 115–121. https://doi.org/10.1038/ja.2016.76

Mishra, M.P., Rath, S., Swain, S.S., Ghosh, G., Das, D., Padhy, R.N., 2017. In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. J. King Saud Univ. - Sci. 29, 84–95. https://doi.org/10.1016/j.jksus.2015.05.007

Mohy El-Din, S.M., El-Ahwany, A.M.D., 2016. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 10, 471–484. https://doi.org/10.1016/j.jtusci.2015.06.004

Mokrani, A., Madani, K., 2016. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 162, 68–76. https://doi.org/10.1016/j.seppur.2016.01.043

Morimoto, M., Cantrell, C.L., Libous-Bailey, L., Duke, S.O., 2009. Phytotoxicity of constituents of glandular trichomes and the leaf surface of camphorweed, Heterotheca subaxillaris. Phytochemistry. 70, 69–74. https://doi.org/10.1016/j.phytochem.2008.09.026

Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N., Bakri, M.M., 2018. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25, 253–258. https://doi.org/10.1016/j.sjbs.2017.02.004

Ngoc, T.M., Khoi, N.M., Ha, D.T., Nhiem, N.X., Tai, B.H., Don, D.V., Luong, H.V., Son, D.C., Bae, K., 2012. Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorganic Med. Chem. Lett. 22, 4625–4628. https://doi.org/10.1016/j.bmcl.2012.05.051

Nguyen, M.T.T., Awale, S., Tezuka, Y., Tran, Q.L., Watanabe, H., Kadota, S., 2004. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol. Pharm. Bull. 27, 1414–1421. https://doi.org/10.1248/bpb.27.1414

Nguyen, M.T.T., Nguyen, N.T., 2012. Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L. Phyther. Res. 26, 1178–1181. https://doi.org/10.1002/ptr.3710

Nguyen, V.T.A., Le, T.D., Phan, H.N., Tran, L.B., 2017. Antibacterial activity of free fatty acids from hydrolyzed virgin coconut oil using lipase from Candida rugosa. J. Lipids. 2017, 1–7. https://doi.org/10.1155/2017/7170162

Ni, H., Hao, R.L., Li, X.F., Raikos, V., Li, H.H., 2018. Synergistic anticancer and antibacterial activities of cordycepin and selected natural bioactive compounds. Trop. J. Pharm. Res. 17, 1621–1627. https://doi.org/10.4314/tjpr.v17i8.22

Nile, S.H., Park, S.W., 2015. Chromatographic analysis, antioxidant, anti- inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod. 70, 238–244. https://doi.org/10.1016/j.indcrop.2015.03.033

Ohta, Y., Ee, Lee, J.B., Hayashi, K., Fujita, A., Park, D.K., Hayashi, T., 2007. In vivo vnti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 55, 10194–10199. https://doi.org/10.1021/jf721287

Olatunji, O.J., Feng, Y., Olatunji, O.O., Tang, J., Ouyang, Z., Su, Z., 2016. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomed. Pharmacother. 81, 7–14. https://doi.org/10.1016/j.biopha.2016.03.009

Olatunji, O.J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O., Ouyang, Z., 2018. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 129, 293-316. https://doi.org/10.1016/j.fitote.2018.05.010

Omezzine, F., Ladhari, A., Haouala, R., 2014. Physiological and biochemical mechanisms of allelochemicals in aqueous extracts of diploid and mixoploid Trigonella foenum-graecum L. South African J. Bot. 93, 167–178. https://doi.org/10.1016/j.sajb.2014.04.009

Onyon, C., Dawson, T., 2018. Gastroenteritis. Paediatr. Child Heal. (United Kingdom) 28, 527–532. https://doi.org/10.1016/j.paed.2018.08.010

Osivand, A., Araya, H., Appiah, K.S., Mardani, H., Ishizaki, T., Fujii, Y., 2018. Allelopathy of wild mushrooms-An important factor for assessing forest ecosystems in Japan. Forests 9, 1–15. https://doi.org/10.3390/f9120773

Osman, N.I., Sidik, N.J., Awal, A., Adam, N.A.M., Rezali, N.I., 2016. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-infl ammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 5, 343–349. https://doi.org/10.5455/jice.20160731025522

Ouertani, A., Neifar, M., Ouertani, R., Masmoudi, A.S., Cherif, A., 2019. Effectiveness of enzyme inhibitors in biomedicine and pharmacotherapy. Adv Tissue Eng Regen Med Open Acess. 5, 85-90.https://doi.org/10.15406/atroa.2019.05.00104

Ouyang, H., Hou, K., Peng, W., Liu, Z., Deng, H., 2017. Antioxidant and xanthine oxidase inhibitory activities of total polyphenols from onion. Saudi J. Biol. Sci. 25, 1509-1513. https://doi.org/10.1016/j.sjbs.2017.08.005

Pacher, P., Nivorozhkin, A., Szabó, C., 2006. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58, 87–114. https://doi.org/10.1124/pr.58.1.6

Panda, A.K., Swain, K.C., 2011. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J. Ayurveda Integr. Med. 2, 9–13. https://doi.org/10.4103/0975-9476.78183

Park, J.G., Son, Y.-J., Lee, T.H., Baek, N.J., Yoon, D.H., Kim, T.W., Aravinthan, A., Hong, S., Kim, J.-H., Sung, G.-H., Cho, J.Y., 2017. Anticancer efficacy of Cordyceps militaris ethanol extract in a xenografted leukemia model. Evidence-Based Complement. Altern. Med. 2017, 1–7. https://doi.org/10.1155/2017/8474703

Parthasarathy, A., Cross, P.J., Dobson, R.C.J., Adams, L.E., Savka, M.A., Hudson, A.O., 2018. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 5, 1–30. https://doi.org/10.3389/fmolb.2018.00029

Pathania, P., Joshi, M., Sagar, A., 2015. Morphological, physiological and molecular studies on wildly collected Cordyceps militaris from North West Himalayas, India. 3, 53–62.

Paul, C.C., Okey, A.O., 2015. Herbal medicine: Yesterday, today and tomorrow. Altern. Integr. Med. 4, 1-5. https://doi.org/10.4172/2327-5162.1000195 Peneva, A., 2007. Allelopathic effect of seed extracts and powder of coffee (Coffea arabica L.) on common cocklebur (Xanthium strumarium L.). Bulg.J.Agric.Sci. 13, 205–211.

Peters, J.S., Chin, C.K., 2003. Inhibition of photosynthetic electron transport by palmitoleic acid is partially correlated to loss of thylakoid membrane proteins. Plant Physiol. Biochem. 41, 117–124. https://doi.org/10.1016/S0981-9428(02)00014-1

Polimova, A.M., Vladimirova, G.A., Proskurnina, E. V., Vladimirov, Y.A., 2011. Aromatic amino acid oxidation products as antioxidants. Biophysics (Oxf). 56, 585–589. https://doi.org/10.1134/S000635091104021X

Qian, H., Chen, W., Sun, L., Jin, Y., Liu, W., Fu, Z., 2009a. Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology. 18, 537–543. https://doi.org/10.1007/s10646-009-0311-8

Qian, H., Xu, X., Chen, W., Jiang, H., Jin, Y., Liu, W., Fu, Z., 2009b. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere. 75, 368-375. https://doi.org/10.1016/j.chemosphere.2008.12.040

Quan, N.V., Xuan, T.D., Tran, H.D., Thuy, N.T.D., Trang, L.T., Huong, C.T., Andriana, Y., Tuyen, P.T., 20 . Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 24. 1-14. https://doi.org/10.3390/molecules24030605

Quy, T.N., Xuan, T.D., Andriana, Y., Khanh, T.D., Teschke, R., 2019. Cordycepin isolated from Cordyceps militaris: Its newly discovered herbicidal property and potential plant-based novel alternative to glyphosate. Molecules. 24, 1-18. https://doi.org/10.3390/molecules24162901

Ragab, G., Elshahaly, M., Bardin, T., 2017. Gout: An old disease in new perspective – A review. J. Adv. Res. 8, 495–511. https://doi.org/10.1016/j.jare.2017.04.008

Rayee, R., Tran, H.D., Xuan, T.D., Khanh, T.D., 2018. Imposed water deficit after anthesis for the improvement of macronutrients, quality, phytochemicals, and antioxidants in rice grain. Sustain. 10, 1-12.https://doi.org/10.3390/su10124843

Reis, F. ., Barros, L., Calhelha, R.C., Ćirić, A., Griens e n, L.J.L.D., o o ić, ., Ferreira, I.C.F.R., 2013. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol. 62, 91–98. https://doi.org/10.1016/j.fct.2013.08.033

Rice, E.L. (1984) Allelopathy. 2nd Edition, Academic Press, New York, 422. Rodriguez, J.M.G., Towns, M.H., 2019. Analysis of student reasoning about Michaelis-Menten enzyme kinetics: Mixed conceptions of enzyme inhibition. Chem. Educ. Res. Pract. 20, 428–442. https://doi.org/10.1039/c8rp00276b

Saag, K.G., Choi, H., 2006. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res. Ther. 8, 1–7. https://doi.org/10.1186/ar1907

Sabina, R.L., Paul, A.L., Ferl, R.J., Laber, B., Lindell, S.D., 2007. Adenine nucleotide pool perturbation is a metabolic trigger for AMP deaminase inhibitor-based herbicide toxicity. Plant Physiol. 143, 1752–1760. https://doi.org/10.1104/pp.107.096487

Saccà, S.C., Cutolo, C.A., Ferrari, D., Corazza, P., Traverso, C.E., 2018. The eye, oxidative damage and polyunsaturated fatty acids. Nutrients 10, 1–15. https://doi.org/10.3390/nu10060668

Sado-Kamdem, S.L., Vannini, L., Guerzoni, M.E., 2009. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int. J. Food Microbiol. 129, 288-294.https://doi.org/10.1016/j.ijfoodmicro.2008.12.010

Sammons, R.D., Gaines, T.A., 2014. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 70, 1367–1377. https://doi.org/10.1002/ps.3743

Santi, M.D., Paulino Zunini, M., Vera, B., Bouzidi, C., Dumontet, V., Abin- Carriquiry, A., Grougnet, R., Ortega, M.G., 2018. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem. 143, 577–582. https://doi.org/10.1016/j.ejmech.2017.11.071

Santos, M.S.F., Schaule, G., Alves, A., Madeira, L.M., 2013. Adsorption of paraquat herbicide on deposits from drinking water networks. Chem. Eng. J. 229, 324–333. https://doi.org/10.1016/j.cej.2013.06.008

Sarah, B.D., Sarah, K.S., 2019. Evaluation and management of urinary tract infection in the emergency department. Emerg. Med. Clin. North. Am. 37, 707-723. https://doi.org/10.1016/j.emc.2019.07.007

Sari, N., Suparmin, A., Kato, T., Park, E.Y., 2016. Improved cordycepin production in a liquid surface culture of Cordyceps militaris isolated from wild strain. Biotechnol. Bioprocess Eng. 21, 595–600. https://doi.org/10.1007/s12257-016-0405-0

Sarmah, A.K., Kookana, R.S., Alston, A.M., 1998. Fate and behaviour of triasulfuron, metsulfuron-methyl, and chlorsulfuron in the Australian soil environment: A review. Aust. J. Agric. Res. 49, 775–790. https://doi.org/10.1071/A97131

Sasamoto, H., Fujii, Y., Ashihara, H., 2015. Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts. Nat. Prod. Commun. 10, 751–754. https://doi.org/10.1177/1934578x1501000513

Sedigheh, H.G., Mortazavian, M., Norouzian, D., Atyabi, M., Akbarzadeh, A., Hasanpoor, K., Ghorbani, M., 2011. Oxidative stress and leaf senescence. BMC Res. Notes 4, 477. https://doi.org/10.1186/1756-0500-4-477

Sergiev, I.G., Alexieva, V.S., Ivanov, S. V., Moskova, I.I., Karanov, E.N., 2006. The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic. Biochem. Physiol. 85, 139–146. https://doi.org/10.1016/j.pestbp.2006.01.001

Sharma, A., Flores-Vallejo, R. del C., Cardoso-Taketa, A., Villarreal, M.L., 2017. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 208, 264–329. https://doi.org/10.1016/j.jep.2016.04.045

Sheerin, N.S., Glover, E.K., 2019. Urinary tract infection. Med. (United Kingdom). 47, 546–550. https://doi.org/10.1016/j.mpmed.2019.06.008

Sheu, C.W., Freese, E., 1972. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J. Bacteriol. 111, 516–524.

Shin, S.Y., Bajpai, V.K., Kim, H.R., Kang, S.C., 2007. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT - Food Sci. Technol. 40, 1515–1519. https://doi.org/10.1016/j.lwt.2006.12.005

Shrestha, B., Sung, J.M., 2005. Notes on Cordyceps species collected from the central region of Nepal. Mycobiology. 33, 235-239. https://doi.org/10.4489/myco.2005.33.4.235

Shrestha, B., Zhang, W., Zhang, Y., Liu, X., 2012. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 11, 599–614. https://doi.org/10.1007/s11557-012-0825-y

Silva, F.B., Costa, A.C., Alves, R.R., Megguer, C.A., 2014. Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. Am. J. Plant Sci. 05, 2509–2519. https://doi.org/10.4236/ajps.2014.516265

Slaby, S., Titran, P., Marchand, G., Hanotel, J., Lescuyer, A., Leprêtre, A., Bodart, J.F., Marin, M., Lemiere, S., 2019. Effects of glyphosate and a commercial formulation Roundup® exposures on maturation of Xenopus laevis oocytes. Environ. Sci. Pollut. Res. Int. 2019, 1-9. https://doi.org/10.1007/s11356-019- 04596-2

Smiderle, F.R., Baggio, C.H., Borato, D.G., Santana-Filho, A.P., Sassaki, G.L., Iacomini, M., Van Griensven, L.J.L.D., 2014. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear ( →3 )-β-D-glucan. PLoS One. 9, 1-11.https://doi.org/10.1371/journal.pone.0110266

Sodaeizadeh, H., Rafieiolhossaini, M., Van Damme, P., 2010. Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Ind. Crops Prod. 31, 385–394. https://doi.org/10.1016/j.indcrop.2009.12.006

Soltys, D., Krasuska, U., Bogatek, R., Gniazdowsk, A., 2013. Allelochemicals as bioherbicides -present and perspectives. Herbic. - Curr. Res. Case Stud. Use. 20, 517-542. https://doi.org/10.5772/56185

Speert, D.P., Wannamaker, L.W., Gray, E.D., Clawson, C.C., 1979. Bactericidal effect of oleic acid on group A streptococci: Mechanism of action. Infect. Immun. 26, 1202–1210.

Spiassi, A., Nóbrega, L.H.P., Rosa, D.M., Pacheco, F.P., Senem, J., Piccolo De Lima, G., 2015. Allelopathic effects of pathogenic fungi on weed plants of soybean and corn crops. Biosci. J. 31, 1037–1048. https://doi.org/10.14393/BJ-v31n4a2015-26142

Spilak, M.P., Madsen, A.M., Knudsen, S.M., Kolarik, B., Hansen, E.W., Frederiksen, M., Gunnarsen, L., 2015. Impact of dwelling characteristics on concentrations of bacteria, fungi, endotoxin and total inflammatory potential in settled dust. Build. Environ. 93, 64–71. https://doi.org/10.1016/j.buildenv.2015.03.031

tan o ić , N., ihaji lo -Krstev, T., Zlat o ić, B., tan o -Jo a no ić, V., it ić, V., Jo ić, J., Čomić, L., Kocić, B., Bernstein, N., 20 6. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan peninsula. NJAS - Wageningen J. Life Sci. 78, 21–28. https://doi.org/10.1016/j.njas.2015.12.006

Strelow, J., Dewe, W., Iversen, P.W., Brooks, H.B., Radding, J.A., Mcgee, J., Weidner, J., 2012. Mechanism of action assays for enzymes. Assay Guid. Man. 2012, 1–22. https://doi.org/10.1016/j.tics.2014.04.003

Sunaina, D., Singh, N.B., 2015. Alleviation of allelopathic stress of benzoic acid by indole acetic acid in Solanum lycopersicum. Sci. Hortic. (Amsterdam). 192, 211-217. https://doi.org/10.1016/j.scienta.2015.06.013

Suzuki, T., Waller, G.R., 1987. Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil. 98, 131–136. https://doi.org/10.1007/BF02381733

Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., Mulet, J.M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African J. Bot. 105, 306–312. https://doi.org/10.1016/j.sajb.2016.03.011

Tamta, H., Kalra, S., Mukhopadhyay, A.K., 2006. Biochemical characterization of some pyrazolopyrimidine-based inhibitors of xanthine oxidase. Biochem. 71, 2–7. https://doi.org/10.1134/S0006297906130086

Tamta, H., Thilagavathi, R., Chakraborti, A.K., Mukhopadhyay, A.K., 2005. 6-(N- benzoylamino)purine as a novel and potent inhibitor of xanthine oxidase: Inhibition mechanism and molecular modeling studies. J. Enzyme Inhib. Med. Chem. 20, 317–324. https://doi.org/10.1080/14756360500112326

Tang, J., Qian, Z., Wu, H., 2018. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresour. Technol. 268, 60–67. https://doi.org/10.1016/j.biortech.2018.07.128

Tanti, A., Bhattacharyya, P., Sandilya, S., Dutta, P., 2016. Allelopathic potential of caffeine as growth and germination inhibitor to popular tea weed, Borreria hispida L. Curr. Life Sci. 2, 114–117. https://doi.org/10.5281/zenodo.163671

Tarazona, J. V., Court-Marques, D., Tiramani, M., Reich, H., Pfeil, R., Istace, F., Crivellente, F., 2017. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 91, 2723–2743. https://doi.org/10.1007/s00204-017-1962-5

Tesio, F., Ferrero, A., 2010. Allelopathy, a chance for sustainable weed management. Int. J. Sustain. Dev. World Ecol. 17, 377-389. https://doi.org/10.1080/13504509.2010.507402

Thanh, P.T.V., Ismail, T., Mishyna, M., Appiah, S.K., Oikawa, Y., Fuji, Y., 2019. Caffeine: The allelochemical responsible for the plant growth inhibitory activity of Vietnamese tea (Camellia sinensis L. Kuntze). Agronomy. 9, 1-15. https://doi.org/10.3390/agronomy9070396

Thiour-Mauprivez, C., Martin-Laurent, F., Calvayrac, C., Barthelmebs, L., 2019. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci. Total Environ. 684, 314–325. https://doi.org/10.1016/j.scitotenv.2019.05.230

Thompson, L., Cockayne, A., Spiller, R.C., 1994. Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: A possible explanation of the effect of diet on peptic ulceration. Gut 35, 1557–1561. https://doi.org/10.1136/gut.35.11.1557

Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A.R., 2013. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 4, 1–13. https://doi.org/10.3389/fpls.2013.00062

Tongmai, T., Maketon, M., Chumnanpuen, P., 2018. Prevention potential of Cordyceps militaris aqueous extract against cyclophosphamind-induced mutagenicity and sperm abnormality in rats. Agric. Nat. Resour. 52, 419–423. https://doi.org/10.1016/j.anres.2018.11.005

Trezzi, M.M., Vidal, R.A., Junior, A.A.B., Hertwig Bittencourt, H., Silva Souza Filho, A.P., 2016. Allelopathy: Driving mechanisms governing its activity in agriculture. J. Plant Interact. 11, 53-60.https://doi.org/10.1080/17429145.2016.1159342

Tsai, W.T., 2019. Trends in the use of glyphosate herbicide and its relevant regulations in Taiwan: A water contaminant of increasing concern. Toxics.7, 1-9. https://doi.org/10.3390/toxics7010004

Tsai, Y.J., Lin, L.C., Tsai, T.H., 2010. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J. Agric. Food Chem. 58, 4638–4643. https://doi.org/10.1021/jf100269g

Tuli, H.S., Sandhu, S.S., Sharma, A.K., 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 4, 1–12. https://doi.org/10.1007/s13205-013-0121-9

Tuli, H.S., Sharma, A.K., Sandhu, S.S., Kashyap, D., 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93, 863–869. https://doi.org/10.1016/j.lfs.2013.09.030

Tzin, V., Galili, G., 2010. The Biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arab. B. 8, 1-18.https://doi.org/10.1199/tab.0132

Tzvetkova, P., Lyubenova, M., Boteva, S., Todorovska, E., Tsonev, S., Kalcheva, H., 2019. Effect of herbicides paraquat and glyphosate on the early development of two tested plants. IOP Conf. Ser. Earth Environ. Sci. 221, 1-16. https://doi.org/10.1088/1755-1315/221/1/012137

Umamaheswari, M., AsokKumar, K., Somasundaram, A., Sivashanmugam, T., Subhadradevi, V., Ravi, T.K., 2007. Xanthine oxidase inhibitory activity of some Indian medical plants. J. Ethnopharmacol. 109, 547–551. https://doi.org/10.1016/j.jep.2006.08.020

Upham, B.L., Hatzios, K.K., 1987. Counteraction of paraquat toxicity at the chloroplast level. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 42, 824–828. https://doi.org/10.1515/znc-1987-0631

Valle, D.L., Andrade, J.I., Puzon, J.J.M., Cabrera, E.C., Rivera, W.L., 2015. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac. J. Trop. Biomed. 5, 532–540. https://doi.org/10.1016/j.apjtb.2015.04.005

Van, T.M., Xuan, T.D., Minh, T.N., Quan, N.V., 2018. Isolation and purification of potent growth inhibitors from Piper methysticumroot. Molecules 23, 1-13. https://doi.org/10.3390/molecules23081907

Vikrant, P., Verma, K.K., Rajak, R.C., Pandey, A.K., 2006. Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. J. Phytopathol. 154, 461–468. https://doi.org/10.1111/j.1439-0434.2006.01129.x

Wada, T., Sumardika, I.W., Saito, S., Ruma, I.M.W., Kondo, E., Shibukawa, M., Sakaguchi, M., 2017. Identification of a novel component leading to anti- tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1061–1062, 209–219. https://doi.org/10.1016/j.jchromb.2017.07.022

Wang, F., Yin, P., Lu, Y., Zhou, Z., Jiang, C., Liu, Y., Yu, X., 2015. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis. Oncotarget. 6, 35496-35508. https://doi.org/10.18632/oncotarget.6072

Wang, H.J., Pan, M.C., Chang, C.K., Chang, S.W., Hsieh, C.W., 2014. Optimization of ultrasonic-assisted extraction of cordycepin from Cordyceps militaris using orthogonal experimental design. Molecules. 19, 20808–20820. https://doi.org/10.3390/molecules191220808

Wang, M., Meng, X.Y., Yang, R. Le, Qin, T., Wang, X.Y., Zhang, K.Y., Fei, C.Z., Li, Y., Hu, Y.L., Xue, F.Q., 2012. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydr. Polym. 89, 461–466. https://doi.org/10.1016/j.carbpol.2012.03.029

Wang, X., Luo, F., Zhao, H., 2014. Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α positi e - feedback circuit. PLoS One. 9, 1–7. https://doi.org/10.1371/journal.pone.0093837

Wang, Z., Chen, Z., Jiang, Z., Luo, P., Liu, L., Huang, Y., Wang, H., Wang, Yu, Long, L., Tan, X., Liu, D., Jin, T., Wang, Yawei, Wang, Yang, Liao, F., Zhang, C., Chen, L., Gan, Y., Liu, Y., Yang, F., Huang, C., Miao, H., Chen, J., Cheng, T., Fu, X., Shi, C., 2019. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun. 10, 1-16. https://doi.org/10.1038/s41467-019-10386-8

Wen, Z., Du, X., Meng, N., Li, Y., Mi, R., Li, X., Sun, Y., Ma, S., Li, S., 2019. Tussah silkmoth pupae improve anti-tumor properties of Cordyceps militaris (L.) Link by increasing the levels of major metabolite cordycepin. RSC Adv. 9, 5480-5491. https://doi.org/10.1039/c8ra09491h

Westwood, J.H., Charudattan, R., Duke, S.O., Fennimore, S.A., Marrone, P., Slaughter, D.C., Swanton, C., Zollinger, R., 2018. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 66, 275–285. https://doi.org/10.1017/wsc.2017.78

Wicke, D., Schulz, L.M., Lentes, S., Scholz, P., Poehlein, A., Gibhardt, J., Daniel, R., Ischebeck, T., Commichau, F.M., 2019. Identification of the first glyphosate transporter by genomic adaptation. Environ. Microbiol. 21, 1287– 1305. https://doi.org/10.1111/1462-2920.14534

Won, S.R., Hong, M.J., Kim, Y.M., Li, C.Y., Kim, J.W., Rhee, H.I., 2007. Oleic acid: An efficient inhibitor of glucosyltransferase. FEBS Lett. 581, 4999– 5002. https://doi.org/10.1016/j.febslet.2007.09.045

Wu, W.C., Hsiao, J.R., Lian, Y.Y., Lin, C.Y., Huang, B.M., 2007. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol. 60, 103–111. https://doi.org/10.1007/s00280-006- 0354-y

Xiong, C., Xia, Y., Zheng, P., Shi, S., Wang, C., 2010. Developmental stage- specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology. 1, 25-66. https://doi.org/10.1080/21501201003674581

Xuan, T.D., Yulianto, R., Andriana, Y., Khanh, T.D., Khanh, T.D., Anh, T.T.T., Kakar, K., Haqani, M.S., 2018. Chemical profile, antioxidant activities and allelopathic potential of liquid waste from germinated brown rice. Allelopath. J. 45, 89-100. https://doi.org/10.13140/RG.2.2.16579.71208

Xuan, T.D., Shinkichi, T., Khanh, T.D., Chung, I.M., 2005. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop Prot. 24, 197–206. https://doi.org/10.1016/j.cropro.2004.08.004

Xuan, T. D., Tawata, S., Khanh, T.D., Chung, I.M., 2005. Decomposition of allelopathic plants in soil. J. Agron. Crop Sci. 191, 162–171. https://doi.org/10.1111/j.1439-037X.2005.00170.x

Xuan, T.D., Tsuzuki, E., Uematsu, H., Terao, H., 2001. Weed control with alfalfa pellets in transplanting rice. Weed Biol. Manag. 1, 231–235. https://doi.org/10.1046/j.1445-6664.2001.00034.x

Yanniccari, M., Gómez-Lobato, M.E., Istilart, C., Natalucci, C., Giménez, D.O., Castro, A.M., 2017. Mechanism of resistance to glyphosate in Lolium perenne from Argentina. Front. Ecol. Evol. 5, 1–8. https://doi.org/10.3389/fevo.2017.00123

Yasunaka, K., Abe, F., Nagayama, A., Okabe, H., Lozada-Pérez, L., López- Villafranco, E., Muñiz, E.E., Aguilar, A., Reyes-Chilpa, R., 2005. Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J. Ethnopharmacol. 97, 293–299. https://doi.org/10.1016/j.jep.2004.11.014

Yi, S.Y., Cui, Y., Zhao, Y., Liu, Z.D., Lin, Y.J., Zhou, F., 2016. A novel naturally occurring class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. confers high glyphosate tolerance to rice. Sci. Rep. 6, 1–11. https://doi.org/10.1038/srep19104

Yong, T., Chen, S., Xie, Y., Chen, D., Su, J., Shuai, O., Jiao, C., Zuo, D., 2018. Cordycepin, a characteristic bioactive constituent in Cordyceps militaris, ameliorates hyperuricemia through URAT1 in hyperuricemic mice. Front. Microbiol. 9, 1–12. https://doi.org/10.3389/fmicb.2018.00058

Yong, T., Zhang, M., Chen, D., Shuai, O., Chen, S., Su, J., Jiao, C., Feng, D., Xie, Y., 2016. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine. J. Ethnopharmacol. 194, 403–411. https://doi.org/10.1016/j.jep.2016.10.001

Yoo, H., Shin, J., Cho, J., Son, C., Lee, Y., Park, S., Cho, C., 2004. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta. Pharmacol. Sin. 25, 657-665.

Yoo, H., Widhalm, J.R., Qian, Y., Maeda, H., Cooper, B.R., Jannasch, A.S., Gonda, I., Lewinsohn, E., Rhodes, D., Dudareva, N., 2013. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 4, 1-11. https://doi.org/10.1038/ncomms3833

Yoon, B.K., Jackman, J.A., Valle-González, E.R., Cho, N.J., 2018. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19, 1-40. https://doi.org/10.3390/ijms19041114

Yu, J.Q., Ye, S.F., Zhang, M.F., Hu, W.H., 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139. https://doi.org/10.1016/S0305-1978(02)00150-3

Yu, R., Song, L., Zhao, Y., Bin, W., Wang, L., 2004. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 75, 465-472. https://doi.org/10.1016/j.fitote.2004.04.003

Yu, R., Yang, W., Song, L., Yan, C., Zhang, Z., Zhao, Y., 2007. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr. Polym. 70, 430–436. https://doi.org/10.1016/j.carbpol.2007.05.005

Yuan, J., Wang, A., He, Y., Si, Z., Xu, S., Zhang, S., Wang, K., Wang, D., Liu, Y., 2016. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats. Brain Res. Bull. 127, 171–176. https://doi.org/10.1016/j.brainresbull.2016.09.010

Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O.A., Carol, P., 2017. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J. Plant Physiol. 218, 26–34. https://doi.org/10.1016/j.jplph.2017.07.009

Zeng, R. S., 2014. Allelopathy - The solution is indirect. J. Chem. Ecol. 40, 515–516. https://doi.org/10.1007/s10886-014-0464-7

Zhang, D. ju, Zhang, J., Yang, W. qin, Wu, F. zhong, 2010. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25, 13–23. https://doi.org/10.1007/s11284-009-0627-0

Zhang, J., Wen, C., Duan, Y., Zhang, H., Ma, H., 2019. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 132, 906–914. https://doi.org/10.1016/j.ijbiomac.2019.04.020

Zhang, Z., Tudi, T., Liu, Y., Zhou, S., Feng, N., Yang, Y., Tang, C., Tang, Q., Zhang, J., 2016. Preparative isolation of cordycepin, N6-(2-hydroxyethyl)- adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1033–1034, 218–225. https://doi.org/10.1016/j.jchromb.2016.08.025

Zheng, C.J., Yoo, J.S., Lee, T.G., Cho, H.Y., Kim, Y.H., Kim, W.G., 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids.

FEBS Lett. 579, 5157–5162. https://doi.org/10.1016/j.febslet.2005.08.028 Zhou, X., Cai, G., He, Y.I., Tong, G., 2016. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+ -dependent DNA ligase inhibitor. Exp. Ther. Med. 12, 1812–1816. https://doi.org/10.3892/etm.2016.3536

Zhou, X., Stevens, M.J.A., Neuenschwander, S., Schwarm, A., Kreuzer, M., Bratus-Neuenschwander, A., Zeitz, J.O., 2018. The transcriptome response of the ruminal methanogen Methanobrevibacter ruminantium strain M1 to the inhibitor lauric acid. BMC Res. Notes. 11, 1–10. https://doi.org/10.1186/s13104-018-3242-8

Zhu, Z.Y., Liu, F., Gao, H., Sun, H., Meng, M., Zhang, Y.M., 2016. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 93, 1090–1099. https://doi.org/10.1016/j.ijbiomac.2016.09.076

Zulet, A., Gil-Monreal, M., Villamor, J.G., Zabalza, A., van der Hoorn, R.A.L., Royuela, M., 2013. Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis. PLoS One. 8, 1-9.https://doi.org/10.1371/journal.pone.0073847

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る