リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular characteristics of the photosensitizer TONS504: Comparison of its singlet oxygen quantum yields and photodynamic antimicrobial effect with those of methylene blue」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular characteristics of the photosensitizer TONS504: Comparison of its singlet oxygen quantum yields and photodynamic antimicrobial effect with those of methylene blue

宍道 紘一郎 広島大学

2022.03.23

概要

Infectious keratitis results in corneal opacity and eventually vision
loss if it is not managed appropriately. According to a systematic review,
non-trachomatous corneal opacities are ranked as the fifth leading cause
of vision loss [1]. Antibiotic agents are currently the most reliable and
widely accepted treatment for infectious keratitis. ...

この論文で使われている画像

参考文献

[1] S.R. Flaxman, R.R.A. Bourne, S. Resniko, P. Ackland, T. Braithwaite, M. V Cicinelli,

A. Das, J.B. Jonas, J. Kee, J.H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K.

Pesudovs, A. Silvester, G.A. Stevens, N. Tahhan, T.Y. Wong, Global causes of

blindness and distance vision impairment 1990–2020 : A systematic review and

meta-analysis, lancet glob. Heal. 5 (2020) 1221–1234. doi:https://doi.

org/10.1016/S2214-109X(17)30393-5.

[2] L. Ung, P.J.M. Bispo, S.S. Shanbhag, M.S. Gilmore, J. Chodosh, The persistent

dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial

resistance, Surv. Ophthalmol. 64 (2019) 255–271, https://doi.org/10.1016/j.

survophthal.2018.12.003.

[3] K.J. Ray, L. Prajna, M. Srinivasan, M. Geetha, R. Karpagam, D. Glidden, C.

E. Oldenburg, C.Q. Sun, S.D. McLeod, N.R. Acharya, T.M. Lietman,

Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis,

JAMA Ophthalmol. 131 (2013) 310–313, https://doi.org/10.1001/

jamaophthalmol.2013.1718.

[4] N. Venkatesh Prajna, P. Lalitha, R. Rajaraman, T. Krishnan, A. Raghavan,

M. Srinivasan, K.S. O’Brien, M. Zegans, S.D. McLeod, N.R. Acharya, J.D. Keenan, T.

M. Lietman, J. Rose-Nussbaumer, J. Mascarenhas, R. Karpagam, M. Rajkumar, S.

R. Sumithra, C. Sundar, P. Manikandan, N. Shivananda, J.P. Whitcher, S. Lee, B.

L. Shapiro, C.E. Oldenburg, K.C. Hong, M. Fisher, A. Aldave, D. Everett, J. Glover,

K. Ananda Kannan, S. Kymes, I. Schwab, D. Glidden, K. Ray, V. Cevallos, C.M. Kidd,

Changing azole resistance: A secondary analysis of the MUTT I randomized clinical

trial, JAMA Ophthalmol. 134 (2016) 693–696, https://doi.org/10.1001/

jamaophthalmol.2016.0530.

[5] F. Cieplika, D. Dengb, W. Crielaardb, W. Buchallaa, E. Hellwigc, A. Al-Ahmad,

T. Misch, Antimicrobial photodynamic therapy - what we know and what we don’t,

Crit. Rev. Microbiol. 44 (2018) 571–589, https://doi.org/10.1080/

1040841X.2018.1467876.

[6] M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob.

Chemother. 42 (1998) 13–28, https://doi.org/10.1093/jac/42.1.13.

[7] F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta,

R. Chandran, M. Karimi, N.A. Parizotto, R. Yin, G.P. Tegos, M.R. Hamblin,

Antimicrobial strategies centered around reactive oxygen species - bactericidal

antibiotics, photodynamic therapy, and beyond, FEMS Microbiol. Rev. 37 (2013)

955–989, https://doi.org/10.1111/1574-6976.12026.

[8] M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G.P. Tegos, M.

R. Hamblin, Photoantimicrobials—are we afraid of the light? Lancet Infect. Dis. 17

(2017) e49–e55, https://doi.org/10.1016/S1473-3099(16)30268-7.

[9] S.A.R. Martins, J.C. Combs, G. Noguera, W. Camacho, P. Wittmann, R. Walther,

M. Cano, J. Dick, A. Behrens, Antimicrobial efficacy of riboflavin/UVA

combination (365 nm) in vitro for bacterial and fungal isolates: a potential new

treatment for infectious keratitis, Investig. Ophthalmol. Vis. Sci. 49 (2008)

3402–3408, https://doi.org/10.1167/iovs.07-1592.

[10] D.G. Said, M.S. Elalfy, Z. Gatzioufas, E.S. El-Zakzouk, M.A. Hassan, M.Y. Saif, A.

A. Zaki, H.S. Dua, F. Hafezi, Collagen cross-linking with photoactivated riboflavin

(PACK-CXL) for the treatment of advanced infectious keratitis with corneal

melting, Ophthalmology. 121 (2014) 1377–1382, https://doi.org/10.1016/j.

ophtha.2014.01.011.

[11] D. Tabibian, C. Mazzotta, F. Hafezi, PACK-CXL: corneal cross-linking in infectious

keratitis, Eye Vis. 3 (2016) 1–5, https://doi.org/10.1186/s40662-016-0042-x.

[12] X. Qin, X. Sun, J. Lu, PACK-CXL: corneal collagen cross-linking for infectious

keratitis, Zhonghua Shiyan Yanke Zazhi/Chinese J. Exp. Ophthalmol. 36 (2018)

570–575, https://doi.org/10.3760/cma.j.issn.2095-0160.2018.07.018.

[13] M.S. Norn, Vital staining of the cornea and conjunctiva with a mixture of

fluorescein and rose Bengal, Am J. Ophthalmol. 64 (1967) 1078–1080, https://doi.

org/10.1016/0002-9394(67)93058-9.

[14] A. Arboleda, D. Miller, F. Cabot, M. Taneja, M.C. Aguilar, K. Alawa, G. Amescua, S.

H. Yoo, J.M. Parel, Assessment of rose bengal versus riboflavin photodynamic

therapy for inhibition of fungal keratitis isolates, Am J. Ophthalmol. 158 (2014),

https://doi.org/10.1016/j.ajo.2014.04.007.

[15] F. Halili, A. Arboleda, H. Durkee, M. Taneja, D. Miller, K.A. Alawa, M.C. Aguilar,

G. Amescua, H.W. Flynn, J.M. Parel, Rose Bengal- and riboflavin-mediated

photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus

keratitis isolates, Am J. Ophthalmol. 166 (2016) 194–202, https://doi.org/

10.1016/j.ajo.2016.03.014.

[16] A. Naranjo, A. Arboleda, J.D. Martinez, H. Durkee, M.C. Aguilar, N. Relhan,

N. Nikpoor, A. Galor, S.R. Dubovy, H.W. Flynn, D. Miller, J.M. Parel, G. Amescua,

R. Leblanc, Rose Bengal photodynamic antimicrobial therapy for patients with

progressive infectious keratitis: a pilot clinical study, Am J. Ophthalmol. 214

(2020) 198–200, https://doi.org/10.1016/j.ajo.2020.02.001.

[17] G.B. Kharkwal, S.K. Sharma, Y.Y. Huang, T. Dai, M.R. Hamblin, Photodynamic

therapy for infections: clinical applications, Lasers Surg. Med. 43 (2011) 755–767,

https://doi.org/10.1002/lsm.21080.

[18] C. Spagnul, L.C. Turner, R.W. Boyle, Journal of photochemistry and photobiology

B : biology immobilized photosensitizers for antimicrobial applications,

J. Photochem. Photobiol. B Biol. 150 (2015) 11–30, https://doi.org/10.1016/j.

jphotobiol.2015.04.021.

[19] A. Felgentrager, T. Maisch, D. Dobler, A. Spath, Hydrogen bond acceptors and

additional cationic charges in methylene blue derivatives: photophysics and

antimicrobial efficiency, BioMed Reserch Int. (2013), https://doi.org/10.1155/

2013/482167.

Funding

This work was supported by the Japan Society for the Promotion of

Science (JSPS) Kakenhi Grants-in-Aid for Scientific Research (C) [grant

numbers 15K10894 and 18K09411]; and the Tsuchiya Memorial

Foundation [grant number 2017–2018].

Authorship statement

None.

Declaration of Competing Interest

None.

Acknowledgements

We thank Isao Sakata (Porphyrin Laboratory, Okayama, Japan) for

providing information on TONS504 and Akira Ichikawa (CCS, Kyoto,

K. Shinji et al.

Journal of Photochemistry & Photobiology, B: Biology 221 (2021) 112239

[20] L. Bourr´e, F. Giuntini, I.M. Eggleston, C.A. Mosse, A.J. MacRobert, M. Wilson,

Effective photoinactivation of gram-positive and gram-negative bacterial strains

using an HIV-1 tat peptide-porphyrin conjugate, Photochem. Photobiol. Sci. 9

(2010) 1613–1620, https://doi.org/10.1039/c0pp00146e.

[21] K. Sueoka, T. Chikama, Y.D. Pertiwi, J.A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana,

Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic

filamentous fungi, Lasers Med. Sci. 34 (2019) 743–747, https://doi.org/10.1007/

s10103-018-2654-y.

[22] Y.D. Pertiwi, T. Chikama, K. Sueoka, J.A. Ko, Y. Kiuchi, M. Onodera, T. Sakaguchi,

Photodynamic antimicrobial chemotherapy with the photosensitizer TONS504

eradicates Acanthamoeba, Photodiagn. Photodyn. Ther. 28 (2019) 166–171,

https://doi.org/10.1016/j.pdpdt.2019.08.035.

[23] M.A. Latief, T. Chikama, M. Shibasaki, T. Sasaki, J.A. Ko, Y. Kiuchi, T. Sakaguchi,

A. Obana, Antimicrobial action from a novel porphyrin derivative in photodynamic

antimicrobial chemotherapy in vitro, Lasers Med. Sci. 30 (2014) 383–387, https://

doi.org/10.1007/s10103-014-1681-6.

[24] M.A. Latief, T. Chikama, J.A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana, Inactivation of

acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by

photodynamic antimicrobial chemotherapy, Mol. Vis. 21 (2015) 532–537.

[25] K. Sueoka, T. Chikama, M.A. Latief, J.A. Ko, Y. Kiuchi, T. Sakaguchi, A. Obana,

Time-dependent antimicrobial effect of photodynamic therapy with TONS 504 on

Pseudomonas aeruginosa, Lasers Med. Sci. 33 (2018) 1455–1460, https://doi.org/

10.1007/s10103-018-2490-0.

[26] Y.D. Pertiwi, T. Chikama, K. Sueoka, J.A. Ko, Y. Kiuchi, M. Onodera, T. Sakaguchi,

Efficacy of photodynamic anti-microbial chemotherapy for Acanthamoeba keratitis

in vivo, Lasers Surg. Med. (2020), https://doi.org/10.1002/lsm.23355 in press.

[27] M. Wilson, Photolysis of oral bacteria and its potential use in the treatment of

caries and periodontal disease, J. Appl. Bacteriol. 75 (1993) 299–306, https://doi.

org/10.1111/j.1365-2672.1993.tb02780.x.

[28] R. Boltes Cecatto, L. Siqueira de Magalh˜

aes, M. Fernanda Setúbal Destro Rodrigues,

C. Pavani, A. Lino-dos-Santos-Franco, M. Teixeira Gomes, D. F´

atima Teixeira Silva,

Methylene blue mediated antimicrobial photodynamic therapy in clinical human

studies: The state of the art, Photodiagn. Photodyn. Ther. 31 (2020), https://doi.

org/10.1016/j.pdpdt.2020.101828.

[29] S. Okazaki, T. Tomo, M. Mimuro, Direct measurement of singlet oxygen produced

by four chlorin-ringed chlorophyll species in acetone solution, Chem. Phys. Lett.

485 (2010) 202–206, https://doi.org/10.1016/j.cplett.2009.12.055.

[30] T. Nishimura, K. Hara, N. Honda, S. Okazaki, H. Hazama, K. Awazu, Determination

and analysis of singlet oxygen quantum yields of talaporfin sodium,

protoporphyrin IX, and lipidated protoporphyrin IX using near-infrared

luminescence spectroscopy, Lasers Med. Sci. 35 (2020) 1289–1297, https://doi.

org/10.1007/s10103-019-02907-0.

[31] M.N. Usacheva, M.C. Teichert, M.A. Biel, The role of the methylene blue and

toluidine blue monomers and dimers in the photoinactivation of bacteria,

J. Photochem. Photobiol. B Biol. 71 (2003) 87–98, https://doi.org/10.1016/j.

jphotobiol.2003.06.002.

[32] A.F. Uchoa, K.T. De Oliveira, M.S. Baptista, A.J. Bortoluzzi, Y. Iamamoto, O.

A. Serra, Chlorin photosensitizers sterically designed to prevent self-aggregation,

J. Organomet. Chem. 76 (2011) 8824–8832, https://doi.org/10.1021/jo201568n.

[33] F. Reifsteck, S. Wee, B.J. Wllklnsont, Hydrophobicity-hydrop hilicity of

staphylococci, J. Med. Microbiol. 24 (1987) 65–73, https://doi.org/10.1099/

00222615-24-1-65.

[34] E. Vanhaecke, J.P. Remon, M. Moors, F. Raes, D. De Rudder, A. Van Peteghem,

Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role

of cell surface hydrophobicity, Appl. Environ. Microbiol. 56 (1990) 788–795,

https://doi.org/10.1128/aem.56.3.788-795.1990.

[35] R.R. Goswami, S.D. Pohare, J.S. Raut, S. Mohan Karuppayil, Cell surface

hydrophobicity as a virulence factor in Candida albicans, Biosci. Biotechnol. Res.

Asia 14 (2017) 1503–1511, https://doi.org/10.13005/bbra/2598.

[36] M.N. Usacheva, M.C. Teichert, M.A. Biel, The role of the methylene blue and

toluidine blue monomers and dimers in the photoinactivation of bacteria,

J. Photochem. Photobiol. B Biol. 71 (2003) 87–98, https://doi.org/10.1016/j.

jphotobiol.2003.06.002.

[37] J.P.M.L. Rolim, M.A.S. De-Melo, S.F. Guedes, F.B. Albuquerque-Filho, J.R. De

Souza, N.A.P. Nogueira, I.C.J. Zanin, L.K.A. Rodrigues, The antimicrobial activity

of photodynamic therapy against Streptococcus mutans using different

photosensitizers, J. Photochem. Photobiol. B Biol. 106 (2012) 40–46, https://doi.

org/10.1016/j.jphotobiol.2011.10.001.

[38] T.P. Paulino, K.F. Ribeiro, G. Thedei, A.C. Tedesco, P. Ciancaglini, Use of hand held

photopolymerizer to photoinactivate Streptococcus mutans, Arch. Oral Biol. 50

(2005) 353–359, https://doi.org/10.1016/j.archoralbio.2004.09.002.

[39] E.S. Nyman, P.H. Hynninen, Research advances in the use of tetrapyrrolic

photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B Biol. 73

(2004) 1–28, https://doi.org/10.1016/j.jphotobiol.2003.10.002.

[40] S.J. Wagner, A. Skripchenko, D. Robinette, J.W. Foley, L. Cincotta, Factors

affecting virus Photoinactivation by a series of phenothiazine dyes, Photochem.

Photobiol. 67 (1998) 343–349, https://doi.org/10.1111/j.1751-1097.1998.

tb05208.x.

[41] G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti,

G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic

principles and perspective applications, Lasers Surg. Med. 38 (2006) 468–481,

https://doi.org/10.1002/lsm.20361.

[42] P.A. Lambert, Cellular impermeability and uptake of biocides and antibiotics in

gram-positive bacteria and mycobacteria, J. Appl. Microbiol. Symp. Suppl. 92

(2002) 46–54, https://doi.org/10.1046/j.1365-2672.92.5s1.7.x.

[43] R.E.W. Hancock, A. Bell, Antibiotic uptake into gram-negative bacteria, Curr. Top.

Infect. Dis. Clin. Microbiol. 2 (1989) 21–28, https://doi.org/10.1007/978-3-32286064-4_5.

[44] F.F. Sperandio, Y.Y. Huang, M.R. Hamblin, Antimicrobial photodynamic therapy to

kill gram-negative Bacteria, Recent Pat. Antiinfect. Drug Discov. 8 (2013)

108–120, https://doi.org/10.2174/1574891x113089990012.

[45] R.A. Prates, I.T. Kato, M.S. Ribeiro, G.P. Tegos, M.R. Hamblin, Influence of

multidrug efflux systems on methylene blue-mediated photodynamic inactivation

of Candida albicans, J. Antimicrob. Chemother. 66 (2011) 1525–1532, https://doi.

org/10.1093/jac/dkr160.

[46] G.A. Da Collina, F. Freire, T.P. Da C. Santos, N.G. Sobrinho, S. Aquino, R.A. Prates,

D. De F.T. Da Silva, A.C.R. Tempestini Horliana, C. Pavani, Controlling methylene

blue aggregation: a more efficient alternative to treat Candida albicans infections

using photodynamic therapy, Photochem. Photobiol. Sci. 17 (2018) 1355–1364.

https://doi.org/10.1039/C8PP00238J.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る