リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Microglial process dynamics depend on astrocyte and synaptic activity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Microglial process dynamics depend on astrocyte and synaptic activity

Ikegami, Ako Kato, Daisuke Wake, Hiroaki 名古屋大学

2023.11

概要

Microglia are sensitive brain immune cells that detect and respond to any changes in the
central nervous system.1,2 They are evenly distributed throughout the brain and have ramified
processes that constantly extend and retract as they survey almost all elements of neural
circuits — neuronal somata, synapses, dendrites, axons, and extracellular matrices.3-5 Although
such brain sampling enables rapid detection and response to neuronal damage,4,6,7 increasing
evidence points to a more nuanced role in brain homeostasis beyond mere immunosurveillance.
The physical characteristics and molecular mechanisms of microglial movement are complex.
Microglial process movements can range from targeted chemotaxis toward neuronal damage
to parenchymal surveillance by microglial processes and fine filopodia that extend from these
process ends.5,8,9 If microglial processes distinctly detect and/or contribute to synaptic plasticity,
synapse formation, and elimination, it can be hypothesized that the activity of nearby cells
affects their movement trajectories and dynamics. ...

参考文献

1 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic

brain. Nat Neurosci. 2007;10(11):1387–1394. doi:10.1038/nn1997.

2 Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron.

2013;77(1):10–18. doi:10.1016/j.neuron.2012.12.023.

3 Cserép C, Pósfai B, Lénárt N, et al. Microglia monitor and protect neuronal function through specialized

somatic purinergic junctions. Science. 2020;367(6477):528–537. doi:10.1126/science.aax6752.

4 Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in

vivo. Nat Neurosci. 2005;8(6):752–758. doi:10.1038/nn1472.

5 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain

parenchyma in vivo. Science. 2005;308(5726):1314–1318. doi:10.1126/science.1110647.

6 Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular

nucleotides. Nat Neurosci. 2006;9(12):1512–1519. doi:10.1038/nn1805.

7 Hines DJ, Hines RM, Mulligan SJ, Macvicar BA. Microglia processes block the spread of damage in the

brain and require functional chloride channels. Glia. 2009;57(15):1610–1618. doi:10.1002/glia.20874.

8 Bernier LP, Bohlen CJ, York EM, et al. Nanoscale Surveillance of the Brain by Microglia via cAMPRegulated Filopodia. Cell Rep. 2019;27(10):2895–2908.e4. doi:10.1016/j.celrep.2019.05.010.

9 Smolders SM, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the

move. Prog Neurobiol. 2019;178:101612. doi:10.1016/j.pneurobio.2019.04.001.

10 Jung S, Aliberti J, Graemmel P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted

deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–4114.

doi:10.1128/MCB.20.11.4106-4114.2000.

11 Wang Y, DelRosso NV, Vaidyanathan TV, et al. Accurate quantification of astrocyte and neurotransmitter

fluorescence dynamics for single-cell and population-level physiology. Nat Neurosci. 2019;22(11):1936–1944.

doi:10.1038/s41593-019-0492-2.

12 Lalo U, Palygin O, Verkhratsky A, Grant SG, Pankratov Y. ATP from synaptic terminals and astrocytes

regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep.

2016;6:33609. doi:10.1038/srep33609.

13 Liu YU, Ying Y, Li Y, et al. Neuronal network activity controls microglial process surveillance in awake

mice via norepinephrine signaling. Nat Neurosci. 2019;22(11):1771–1781. doi:10.1038/s41593-019-0511-3.

14 Stowell RD, Sipe GO, Dawes RP, et al. Noradrenergic signaling in the wakeful state inhibits microglial

surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci. 2019;22(11):1782–1792.

doi:10.1038/s41593-019-0514-0.

15 Araya R, Vogels TP, Yuste R. Activity-dependent dendritic spine neck changes are correlated with synaptic

strength. Proc Natl Acad Sci U S A. 2014;111(28):E2895-E2904. doi:10.1073/pnas.1321869111.

16 Miyamoto A, Wake H, Ishikawa AW, et al. Microglia contact induces synapse formation in developing

somatosensory cortex. Nat Commun. 2016;7:12540. doi:10.1038/ncomms12540.

References End

Nagoya J. Med. Sci. 85. 772–778, 2023

778

doi:10.18999/nagjms.85.4.772

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る