リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis

Ishii, Mamoru Tateya, Tomoko Matsuda, Michiyuki Hirashima, Tsuyoshi 京都大学 DOI:10.7554/eLife.61092

2021

概要

A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.

この論文で使われている画像

参考文献

Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M. 2017. Propagating wave of ERK activation orients

collective cell migration. Developmental Cell 43:305–317. DOI: https://doi.org/10.1016/j.devcel.2017.10.016,

PMID: 29112851

Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S,

Leopold WR, Przybranowski SA, Sebolt-Leopold J, Van Becelaere K, Doherty AM, Kennedy RM, Marston D,

Howard WA, Smith Y, Warmus JS, Tecle H. 2008. The discovery of the benzhydroxamate MEK inhibitors CI1040 and PD 0325901. Bioorganic & Medicinal Chemistry Letters 18:6501–6504. DOI: https://doi.org/10.1016/

j.bmcl.2008.10.054, PMID: 18952427

Bok J, Zenczak C, Hwang CH, Wu DK. 2013. Auditory ganglion source of sonic hedgehog regulates timing of cell

cycle exit and differentiation of mammalian cochlear hair cells. PNAS 110:13869–13874. DOI: https://doi.org/

10.1073/pnas.1222341110, PMID: 23918393

Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E. 2021. Theory of mechanochemical patterning and

optimal migration in cell monolayers. Nature Physics 17:267–274. DOI: https://doi.org/10.1038/s41567-02001037-7

Chen P, Johnson JE, Zoghbi HY, Segil N. 2002. The role of Math1 in inner ear development: uncoupling the

establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505.

DOI: https://doi.org/10.3410/f.1006295.78812, PMID: 11973280

Cohen R, Amir-Zilberstein L, Hersch M, Woland S, Loza O, Taiber S, Matsuzaki F, Bergmann S, Avraham KB,

Sprinzak D. 2020. Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nature

Communications 11:5137. DOI: https://doi.org/10.1038/s41467-020-18894-8, PMID: 33046691

De Simone A, Evanitsky MN, Hayden L, Cox BD, Wang J, Tornini VA, Ou J, Chao A, Poss KD, Di Talia S. 2021.

Control of osteoblast regeneration by a train of erk activity waves. Nature 590:129–133. DOI: https://doi.org/

10.1038/s41586-020-03085-8, PMID: 33408418

Driver EC, Northrop A, Kelley MW. 2017. Cell migration, intercalation and growth regulate mammalian cochlear

extension. Development 144:3766–3776. DOI: https://doi.org/10.1242/dev.151761, PMID: 28870992

Groves AK, Fekete DM. 2012. Shaping sound in space: the regulation of inner ear patterning. Development 139:

245–257. DOI: https://doi.org/10.1242/dev.067074, PMID: 22186725

Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K. 2008. A genetically encoded

fluorescent sensor of ERK activity. PNAS 105:19264–19269. DOI: https://doi.org/10.1073/pnas.0804598105,

PMID: 19033456

Hino N, Rossetti L, Marı´n-Llaurado´ A, Aoki K, Trepat X, Matsuda M, Hirashima T. 2020. ERK-Mediated

mechanochemical waves direct collective cell polarization. Developmental Cell 53:646–660. DOI: https://doi.

org/10.1016/j.devcel.2020.05.011, PMID: 32497487

Hirashima T, Adachi T. 2015. Procedures for the quantification of whole-tissue immunofluorescence images

obtained at single-cell resolution during murine tubular organ development. PLOS ONE 10:e0135343.

DOI: https://doi.org/10.1371/journal.pone.0135343, PMID: 26258587

Hirashima T, Adachi T. 2019. Polarized cellular mechano-response system for maintaining radial size in

developing epithelial tubes. Development 146:dev181206. DOI: https://doi.org/10.1242/dev.181206,

PMID: 31619390

Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M. 2015. Intercellular propagation of extracellular

signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 4:e05178. DOI: https://doi.

org/10.7554/eLife.05178, PMID: 25668746

Ishii M. 2021. 2020_cochlearduct. Software Heritage. swh:1:rev:e81398f7827e8a7f91171191224e269cea4685f4.

https://archive.softwareheritage.org/swh:1:dir:72666fd3c72ac48ce0b0242b6afc0fbbf5301e56;origin=https://

github.com/tsuyoshihirashima/2020_cochlearduct/;visit=swh:1:snp:

17519469e0b7a561b0f29367b2d27d03666f2106;anchor=swh:1:rev:e81398f7827e8a7f91171191224e269cea4685f4/

Johnson AB, Fogel NS, Lambert JD. 2019. Growth and morphogenesis of the gastropod shell. PNAS 116:6878–

6883. DOI: https://doi.org/10.1073/pnas.1816089116, PMID: 30867292

Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. 2013. Generation of inner ear sensory epithelia from

pluripotent stem cells in 3D culture. Nature 500:217–221. DOI: https://doi.org/10.1038/nature12298, PMID: 23

842490

Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, Hashino E. 2017. Generation of inner ear organoids

containing functional hair cells from human pluripotent stem cells. Nature Biotechnology 35:583–589.

DOI: https://doi.org/10.1038/nbt.3840, PMID: 28459451

Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M. 2011. Development of an

optimized backbone of FRET biosensors for kinases and GTPases. Molecular Biology of the Cell 22:4647–4656.

DOI: https://doi.org/10.1091/mbc.e11-01-0072, PMID: 21976697

Komatsu N, Terai K, Imanishi A, Kamioka Y, Sumiyama K, Jin T, Okada Y, Nagai T, Matsuda M. 2018. A platform

of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Scientific Reports 8:

8984. DOI: https://doi.org/10.1038/s41598-018-27174-x, PMID: 29895862

Liu Z, Owen T, Zhang L, Zuo J. 2010. Dynamic expression pattern of sonic hedgehog in developing cochlear

spiral ganglion neurons. Developmental Dynamics 239:1674–1683. DOI: https://doi.org/10.1002/dvdy.22302,

PMID: 20503364

Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. 2011.

Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian

development. Development 138:947–957. DOI: https://doi.org/10.1242/dev.057166, PMID: 21303848

Ishii et al. eLife 2021;10:e61092. DOI: https://doi.org/10.7554/eLife.61092

15 of 16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Research article

Developmental Biology

Montcouquiol M, Kelley MW. 2020. Development and patterning of the cochlea: from convergent extension to

planar polarity. Cold Spring Harbor Perspectives in Medicine 10:a033266. DOI: https://doi.org/10.1101/

cshperspect.a033266, PMID: 30617059

Ogura Y, Wen FL, Sami MM, Shibata T, Hayashi S. 2018. A Switch-like activation relay of EGFR-ERK signaling

regulates a wave of cellular contractility for epithelial invagination. Developmental Cell 46:162–172.

DOI: https://doi.org/10.1016/j.devcel.2018.06.004, PMID: 29983336

Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B. 2003. Expression and function of FGF10 in

mammalian inner ear development. Developmental Dynamics 227:203–215. DOI: https://doi.org/10.1002/dvdy.

10297, PMID: 12761848

Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J. 2000. FGF/FGFR2(IIIb) signaling is essential for inner ear morphogenesis. The Journal of Neuroscience 20:6125–6134.

DOI: https://doi.org/10.1523/JNEUROSCI.20-16-06125.2000, PMID: 10934262

Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P. 2007. Wnt5a functions in planar cell

polarity regulation in mice. Developmental Biology 306:121–133. DOI: https://doi.org/10.1016/j.ydbio.2007.03.

011, PMID: 17433286

Raup DM, Michelson A. 1965. Theoretical morphology of the coiled shell. Science 147:1294–1295. DOI: https://

doi.org/10.1126/science.147.3663.1294, PMID: 17790826

Riedl J, Flynn KC, Raducanu A, Ga¨rtner F, Beck G, Bo¨sl M, Bradke F, Massberg S, Aszodi A, Sixt M, WedlichSo¨ldner R. 2010. Lifeact mice for studying F-actin dynamics. Nature Methods 7:168–169. DOI: https://doi.org/

10.1038/nmeth0310-168, PMID: 20195247

Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H.

2008. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nature

Genetics 40:1010–1015. DOI: https://doi.org/10.1038/ng.179, PMID: 18604206

Saffer AM, Carpita NC, Irish VF. 2017. Rhamnose-Containing cell wall polymers suppress helical plant growth

independently of microtubule orientation. Current Biology 27:2248–2259. DOI: https://doi.org/10.1016/j.cub.

2017.06.032, PMID: 28736166

Sato K, Hiraiwa T, Maekawa E, Isomura A, Shibata T, Kuranaga E. 2015. Left-right asymmetric cell intercalation

drives directional collective cell movement in epithelial morphogenesis. Nature Communications 6:10074.

DOI: https://doi.org/10.1038/ncomms10074, PMID: 26656655

Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X. 2012.

Mechanical waves during tissue expansion. Nature Physics 8:628–634. DOI: https://doi.org/10.1038/nphys2355

Smyth DR. 2016. Helical growth in plant organs: mechanisms and significance. Development 143:3272–3282.

DOI: https://doi.org/10.1242/dev.134064, PMID: 27624832

Sun L, Tran N, Liang C, Tang F, Rice A, Schreck R, Waltz K, Shawver LK, McMahon G, Tang C. 1999. Design,

synthesis, and evaluations of substituted 3-[(3- or 4-Carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as

Inhibitors of VEGF, FGF, and PDGF Receptor Tyrosine Kinases. Journal of Medicinal Chemistry 42:5120–5130.

DOI: https://doi.org/10.1021/jm9904295

Tateya T, Imayoshi I, Tateya I, Hamaguchi K, Torii H, Ito J, Kageyama R. 2013. Hedgehog signaling regulates

prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea.

Development 140:3848–3857. DOI: https://doi.org/10.1242/dev.095398, PMID: 23946445

Tateya T, Sakamoto S, Ishidate F, Hirashima T, Imayoshi I, Kageyama R. 2019. Three-dimensional live imaging of

Atoh1 reveals the dynamics of hair cell induction and organization in the developing cochlea. Development

146:dev177881. DOI: https://doi.org/10.1242/dev.177881, PMID: 31676552

Thompson DW. 1942. On Growth and Form. Dover Publications. DOI: https://doi.org/10.1017/

CBO9781107325852

Urness LD, Wang X, Shibata S, Ohyama T, Mansour SL. 2015. Fgf10 is required for specification of non-sensory

regions of the cochlear epithelium. Developmental Biology 400:59–71. DOI: https://doi.org/10.1016/j.ydbio.

2015.01.015, PMID: 25624266

Urness LD, Wang X, Doan H, Shumway N, Noyes CA, Gutierrez-Magana E, Lu R, Mansour SL. 2018. Spatial and

temporal inhibition of FGFR2b ligands reveals continuous requirements and novel targets in mouse inner ear

morphogenesis. Development 145:dev170142. DOI: https://doi.org/10.1242/dev.170142, PMID: 30504125

Wada H, Matsumoto D. 2018. Twisting Growth in Plant Roots Plant Biomechanics. In: Gitmann A, Grill J (Eds).

Structure to Function at Multiple Scales. Springer International Publishing. p. 127–140. DOI: https://doi.org/10.

1007/978-3-319-79099-2

Wang J, Mark S, Zhang X, Qian D, Yoo SJ, Radde-Gallwitz K, Zhang Y, Lin X, Collazo A, Wynshaw-Boris A, Chen

P. 2005. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP

pathway. Nature Genetics 37:980–985. DOI: https://doi.org/10.1038/ng1622, PMID: 16116426

Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. 2009. Myosin II regulates extension, growth and

patterning in the mammalian cochlear duct. Development 136:1977–1986. DOI: https://doi.org/10.1242/dev.

030718, PMID: 19439495

Ishii et al. eLife 2021;10:e61092. DOI: https://doi.org/10.7554/eLife.61092

16 of 16

...

参考文献をもっと見る