リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates

Ando, Yuta Okeyo, Kennedy Omondi Sunaga, Junko Adachi, Taiji 京都大学 DOI:10.1016/j.scr.2021.102352

2021.05

概要

Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.

この論文で使われている画像

参考文献

Adachi, K., Nikaido, I., Ohta, H., Ohtsuka, S., Ura, H., Kadota, M., Wakayama, T.,

Ueda, H.R., Niwa, H., 2013. Context-dependent wiring of Sox2 regulatory networks

for self-renewal of embryonic and trophoblast stem cells. Mol. Cell 52, 380–392.

Ando, Y., Okeyo, K.O., Adachi, T., 2019. Modulation of adhesion microenvironment

using mesh substrates triggers selforganization and primordial germ cell-like

differentiation in mouse ES cells. APL Bioeng. 3, 016102.

Belly, H.D., Stubb, A., Yanagida, A., Labouesse, C., Jones, P.H., Paluch, E.K., Chalut, K.J.,

2021. Membrane tension gates ERK-mediated regulation of pluripotent cell fate. Cell

Stem Cell 28, 273–284.

Blanchard, G.B., Kabla, A.J., Schultz, N.L., Butler, L.C., Sanson, B., Gorfinkiel, N.,

Mahadevan, L., Adams, R.J., 2009. Tissue tectonics: morphogenetic strain rates, cell

shape change and intercalation. Nat. Methods 6, 458–464.

David, B.G., Fujita, H., Yasuda, K., Okamoto, K., Panina, Y., Ichinose, J., Sato, O.,

Horie, M., Ichimura, T., Okada, Y., Watanabe, T.M., 2019. Linking substrate and

nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic

stem cells. Stem Cell Res. 41, 101614.

Desmaison, A., Guillaume, L., Triclin, S., Weiss, P., Ducommun, B., Lobjois, V., 2018.

Impact of physical confinement on nuclei geometry and cell division dynamics in 3D

spheroids. Sci. Rep. 8, 8785.

Du, J., Fan, Y., Guo, Z., Wang, Y., Zheng, X., Huang, C., Liang, B., Gao, L., Cao, Y.,

Chen, Y., Zhang, X., Li, L., Xu, L., Wu, C., Weitz, D.A., Feng, X., 2019. Compression

generated by a 3D supracellular actomyosin cortex promotes embryonic stem cell

colony growth and expression of Nanog and Oct4. Cell Syst. 9, 214–220.

CRediT authorship contribution statement

Yuta Ando: Investigation, Methodology, Writing - original draft,

Visualization. Kennedy Omondi Okeyo: Conceptualization, Method­

ology, Writing - review & editing, Resources, Funding acquisition.

Junko Sunaga: Investigation, Resources. Taiji Adachi: Writing - review

& editing, Resources, Supervision, Funding acquisition.

10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Y. Ando et al.

Stem Cell Research 53 (2021) 102352

Mendoza, M.C., Vilela, M., Juarez, J.E., Blenis, J., Danuser, G., 2015. ERK reinforces

actin polymerization to power persistent edge protrusion during motility. Sci. Signal.

8, ra47.

Miyoshi, H., Adachi, T., 2014. Topography design concept of a tissue engineering

scaffold for controlling cell function and fate through actin cytoskeletal modulation.

Tissue Eng. Part B Rev. 20, 609–627.

Okeyo, K.O., Kurosawa, O., Oana, H., Kotera, H., Washizu, M., 2016. Minimization of

cell-substrate interaction using suspended microstructured meshes initiates cell sheet

formation by self-assembly organization. Biomed. Phys. Eng. Express 2, 065019.

Okeyo, K.O., Kurosawa, O., Yamazaki, S., Oana, H., Kotera, H., Nakauchi, H.,

Washizu, M., 2015. Cell adhesion minimization by a novel mesh culture method

mechanically directs trophoblast differentiation and self-assembly organization of

human pluripotent stem cells. Tissue Eng. Part C Methods 21, 1105–1115.

Okeyo, K.O., Tanabe, M., Kurosawa, O., Oana, H., Washizu, M., 2018. Self-organization

of human iPS cells into trophectoderm mimicking cysts induced by adhesion

restriction using microstructured mesh scaffolds. Dev. Growth Differ. 1, 1–13.

Ollion, J., Cochennec, J., Loll, F., Escud´e, C., Boudier, T., 2013. TANGO: a generic tool

for high-throughput 3D image analysis for studying nuclear organization.

Bioinformatics 29, 1840–1841.

Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F.,

Jenne, D., Holak, T.A., Werb, Z., Sixt, M., Wedlich-Soldner, R., 2008. Lifeact: a

versatile marker to visualize F-actin. Nat. Methods 5, 605–607.

Rosowski, K., Mertz, A.F., Norcross, S., Dufresne, E.R., Horsley, V., 2015. Edges of human

embryonic stem cell colonies display distinct mechanical properties and

differentiation potential. Sci. Rep. 5, 14218.

Sagy, N., Slovin, S., Allalouf, M., Pour, M., Savyon, G., Boxman, J., Nachman, I., 2019.

Prediction and control of symmetry breaking in embryoid bodies by environment

and signal integration. Development 146, dev181917.

Shao, Y., Taniguchi, K., Gurdziel, K., Townshend, R.F., Xue, X., Yong, K.M.A., Sang, J.,

Spence, J.R., Gumucio, D.L., Fu, J., 2017. Self-organized amniogenesis by human

pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16,

419–425.

Shahbazi, M.N., Siggia, E.D., Zernicka-Goetz, M., 2019. Self-organization of stem cells

into embryos: A window on early mammalian development. Science 364, 948–951.

Smith, K.N., Singh, A.M., Dalton, S., 2010. Myc represses primitive endoderm

differentiation in pluripotent stem cells. Cell Stem Cell 7, 343–354.

Takata, N., Sakakura, E., Eiraku, M., Kasukawa, T., Sasai, Y., 2017. Self-patterning of

rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt

antagonism. Nat. Commun. 8, 1339.

Takebe, T., Wells, J.M., 2019. Organoids by design. Science 364, 956–959.

Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K., Niwa, H., 2008. Identification

and characterization of subpopulations in undifferentiated ES cell culture.

Development 135, 909–918.

Verstreken, C.M., Labouesse, C., Agley, C.C., Chalut, C.C., 2019. Embryonic stem cells

become mechanoresponsive upon exit from ground state of pluripotency. Open Biol.

9, 180203.

Warmflash, A., Sorre, B., Etoc, F., Siggia, E.D., Brivanlou, A.H., 2014. A method to

recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat.

Methods 11, 847–854.

Xie, A.W., Binder, B.Y.K., Khalil, A.S., Schmitt, S.K., Johnson, H.J., Zacharias, N.A.,

Murphy, W.L., 2017. Controlled self-assembly of stem cell aggregates instructs

pluripotency and lineage bias. Sci. Rep. 7, 14070.

Yang, S.-H., Kalkan, T., Morrisroe, C., Smith, A., Sharrocks, A.D., 2012. A genome-wide

RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during

embryonic stem cell differentiation. PLoS Genet. 8, e1003112.

Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K.,

Adachi, T., Sasai, Y., 2011. Self-organizing optic-cupmorphogenesis in threedimensional culture. Nature 472, 51–56.

Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S., 2009. Control

of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell

5, 17–26.

Harrison, S.E., Sozen, B., Christodoulou, N., Kyprianou, C., Zernicka-Goetz, M., 2017.

Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in

vitro. Science 356, eaal1810.

Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., Saitou, M., 2011. Reconstitution of the

mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146,

519–532.

Heer, N.C., Martin, A.C., 2017. Tension, contraction and tissue morphogenesis.

Development 144, 4249–4260.

Hiramatsu, R., Matsuoka, T., Kimura-Yoshida, C., Han, S., Mochida, K., Adachi, T.,

Takayama, S., Matsuo, I., 2013. External mechanical cues trigger the establishment

of the anterior-posterior axis in early mouse embryos. Dev. Cell 27, 131–144.

Hirata, H., Sokabe, M., 2015. A novel role of actomyosin in ERK singaling. Commun.

Integr. Biol. 8, e1017176.

Hishida, T., Nozaki, Y., Nakachi, Y., Mizuno, Y., Okazaki, Y., Ema, M., Takahashi, S.,

Nishimoto, M., Okuda, A., 2011. Indefinite self-renewal of ESCs through Myc/Max

transcriptional complex-independent mechanisms. Cell Stem Cell 9, 37–49.

Hooper, M., Hardy, K., Handyside, A., Hunter, S., Monk, M., 1987. HPRT-deficient

(Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells.

Nature 326, 292–295.

Karzbrun, E., Kshirsagar, A., Cohen, S.R., Hanna, J.H., Reiner, O., 2018. Human brain

organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522.

Kimura, T., Kaga, Y., Ohta, H., Odamoto, M., Sekita, Y., Li, K., Yamano, N., Fujikawa, K.,

Isotani, A., Sasaki, N., Toyoda, M., Hayashi, K., Okabe, M., Shinohara, T., Saitou, M.,

Nakano, T., 2014. Induction of primordial germ cell-like cells from mouse embryonic

stem cells by ERK signal inhibition. Stem Cells 32, 2668–2678.

Kshitiz, Park, J., Kim, P., Helen, W., Engler, A.J., Levchenko, A., Kim, D-H., 2012.

Control of stem cell fate and function by engineering physical microenvironment.

Integr. Biol. 4, 1008–1018.

Kumar, A., Placone, J.K., Engler, A.J., 2017. Understanding the extracellular forces that

determine cell fate and maintenance. Development 144, 4261–4270.

Latorre, E., Kale, S., Casares, L., G´

omez-Gonz´

alez, M., Uroz, M., Valon, L., Nair, R.V.,

Garreta, E., Montserrat, N., Del Campo, A., Ladoux, B., Arroyo, M., Trepat, X., 2018.

Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563,

203–208.

Li, J., Minami, I., Shiozaki, M., Yu, L., Yajima, S., Miyagawa, S., Shiba, Y., Morone, N.,

Fukushima, S., Yoshida, M., Li, S., Qiao, L., Li, X., Wang, L., Kotera, H., Nakatsuji, N.,

Sawa, Y., Chen, Y., Liu, L., 2017. Human pluripotent stem cell-derived cardiac tissuelike constructs for repairing the infarcted myocardium. Stem Cell Rep. 9,

1546–1559.

Li, Z., Kurosawa, O., Iwata, H., 2019. Establishment of human trophoblast stem cells

from human induced pluripotent stem cell-derived cystic cells under micromesh

culture. Stem Cell Res. Therapy 10, 245.

Maeda, I., Okamura, D., Tokitake, Y., Ikeda, M., Kawaguchi, H., Mise, N., Abe, K.,

Noce, T., Okuda, A., Matsui, Y., 2013. Max is a repressor of germ cell-related gene

expression in mouse embryonic stem cells. Nat. Commun. 4, 1754.

Matsushiro, Y., Kato-Negeshi, M., Onoe, H., 2018. Differentiation of 3D-shape-controlled

mouse neural stem cell to neural tissues in closed agarose microchambers. Biotech.

Bioeng. 115, 1614–1623.

11

...

参考文献をもっと見る