リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study on adaxial-abaxial polarity-dependent control of vascular stem cell fates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study on adaxial-abaxial polarity-dependent control of vascular stem cell fates

NURANI, Alif Meem 東京大学 DOI:10.15083/0002004758

2022.06.22

概要

Cell division and differentiation are fundamental for constructing the complex body plan of living organisms. These processes are carried out by a population of stem cells with the capacity of selfrenewal as well as transformation to other specialized cell types. Plant vascular stem cells are recognized for their infinite proliferative capacity, causing the girth of a tree bark to grow thicker over a lifetime. Moreover, the immobility of plant stem cells signifies that cell fate decision must occur before the differentiation process, to locate the daughter cells in their functional position. My research aims to elucidate how vascular stem cells in plants choose their cell fate to develop xylem vessels elements that conduct water and phloem sieve elements for transportation of photoassimilates. I used a culture system named as in vitro Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) in which mesophyll cells in Arabidopsis cotyledons reprogram into vascular stem cells, subsequently inducing trans-differentiation of ectopic xylem vessel element-like cells and phloem sieve element-like cells. First, I carried out a chemical screen in VISUAL and successfully isolated a secondary cell wall fluorescent probe BF-170, that allows high-resolution depth imaging of in vitro and in situ xylem development. Next, I used BF-170 to monitor the three-dimensional vascular differentiation pattern in VISUAL. I discovered that ectopic xylem cells were predominantly transdifferentiated from mesophyll cells on the adaxial side. On the contrary, ectopic phloem cells visualized by phloem markers are mostly generated from abaxial mesophyll cells. This suggests that adaxial-abaxial polarity of leaves may be involved during cell fate decision of vascular stem cells. To test this, I further analyzed the effect of abaxial polarity mutants on the xylem differentiation pattern in VISUAL. Among the mutants, YABBY gene family mutant (yab3-12) displayed enhanced xylem differentiation on the abaxial side, indicating that YAB3 may repress xylem and promote phloem cell identity on the abaxial domains in VISUAL. My results using in vitro vascular differentiation system was also supported by the influence of YABBY family genes during secondary growth of vascular tissues in vivo. Based on these results, I discussed the possibility that spatial cues may be relayed by such abaxial mediators to assist in the correct cell fate decision of vascular stem cells. To analyze how adaxial-abaxial polarity cues affect vascular differentiation, I opted for transcriptome analysis of adaxial and abaxial cells isolated by Laser Capture Microdissection (LCM) before and after 33h induction in VISUAL. Interestingly, the expression of xylem-specific genes was severely diminished on the abaxial side, whereas phloem-specific genes were not differentially expressed between adaxialabaxial sides. This provides novel evidence that the abaxial domains primarily suppress xylem differentiation in VISUAL. In search of abaxial regulators of vascular cell fate, I further identified the CLE41 gene, encoding TDIF peptide, as a potential candidate downstream of YAB3, to be abundantly expressed on the abaxial side. Mutant analysis using its receptor TDR exhibited excessive abaxial xylem differentiation. TDIF-TDR is widely known for its role in inhibiting xylem differentiation. Finally, I propose a concept of such peptide-receptor signaling acting downstream of positional cues to assist in vascular patterning.

この論文で使われている画像

参考文献

Akin, D.E. and Burdick, D. (1981) Relationships of different histochemical types of lignified cell walls to forage digestibility. Crop Science 21, 577-581.

Anne, P., Amiguet-Vercher, A., Brandt, B., Kalmbach, L., Geldner, N., Hothorn, M., et al. (2018) CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 145, pii: dev162354.

Anstead, J.A., Froelich, D.R., Knoblauch, M. and Thompson, G.A. (2012) Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2. Plant Cell Physiol. 53, 1033-1042.

Avci, U., Earl Petzold, H., Ismail, I.O., Beers, E.P. and Haigler, C.H. (2008) Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J. 56, 303-315.

Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M., Ruberti, I. et al. (2001) The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126, 643-655.

Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., et al. (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci. U.S.A. 106, 13124-13129.

Barratt, D.H., Kölling, K., Graf, A., Pike, M., Calder, G., Findlay, K., et al. (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol. 155, 328-341.

Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., et al. (2011a) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21, 917-926.

Bishopp, A., Lehesranta, S., Vatén, A., Help, H., El-Showk, S., Scheres, B., et al. (2011b) Phloemtransported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr. Biol. 21, 927-932.

Bonaccorso, O., Lee, J.E., Puah, L., Scutt, C.P. and Golz, J.F. (2012) FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biol. 12,176.

Bonke, M., Thitamadee, S., Mähönen, A.P., Hauser, M.T. and Helariutta, Y. (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426, 181-186.

Brady, S.M., Orlando, D.A., Lee, J.Y., Wang, J.Y., Koch, J., Dinneny, J.R., et al. (2007) A highresolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801-806.

Chitwood, D.H., Guo, M., Nogueira, F.T. and Timmermans, M.C. (2007) Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development 134, 813-823.

Dejonghe, W. and Russinova, E. (2017) Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol. 174, 5-20.

Dharmawardhana, D.P., Ellis, B.E. and Carlson, J.E. (1992) Characterization of vascular lignification in Arabidopsis thaliana. Can. J. Bot. 70, 2238-2244.

Donner, T.J., Sherr, I. and Scarpella, E. (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136, 3235-3246.

Eleftheriou, E.P. and Tsekos, I. (1982) Developmental features of cell wall formation in sieve elements of the grass Aegilops comosa var. thessalica. Ann. Bot. 50, 519-529.

Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., et al. (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768-1774.

Endo, H., Yamaguchi, M., Tamura, T., Nakano, Y., Nishikubo, N., Yoneda, A., et al. (2015) Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation. Plant Cell Physiol. 56, 242-254.

Esau, K. (1972) Cytology of sieve elements in minor veins of sugar beet leaves. New Phytol. 71, 161-168.

Eshed, Y., Izhaki, A., Baum, S.F., Floyd, S.K. and Bowman, J.L. (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities.Development 131, 2997-3006.

Etchells, J.P. and Turner, S.R. (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137, 767-774.

Froelich, D.R., Mullendore, D.L., Jensen, K.H., Ross-Elliott, T.J., Anstead, J.A., Thompson, G.A., et al. (2011) Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell 23, 4428-4445.

Furuta, K.M., Yadav, S.R., Lehesranta, S., Belevich, I., Miyashima, S., Heo, J.O., et al. (2014) Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345, 933-937.

Goldshmidt, A., Alvarez, J.P., Bowman, J.L. and Eshed, Y. (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20, 1217-1230.

Golz, J.F., Roccaro, M., Kuzoff, R. and Hudson, A. (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131, 3661-3670.

Ha, M.A., MacKinnon, I.M., Sturcová, A., Apperley, D.C., McCann, M.C., Turner, S.R., et al. (2002) Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana. Phytochemistry 61, 7-14.

Hasegawa, J., Sakamoto, Y., Nakagami, S., Aida, M., Sawa, S. and Matsunaga, S. (2016) Threedimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol. 57, 462-472.

Hirakawa, Y., Kondo, Y. and Fukuda, H. (2010) Regulation of vascular development by CLE peptide-receptor systems. J. Integr. Plant. Biol. 52, 8-16.

Hirakawa, Y., Shinohara, H., Kondo, Y., Inoue, A., Nakanomyo, I., Ogawa, M., et al. (2008) Noncell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl. Acad. Sci., U.S.A. 105, 15208-15213.

Irvine, K.D. and Vogt, T.F. (1997) Dorsal-ventral signaling in limb development. Curr. Opin. Cell Biol. 9, 867-876.

Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K. and Poethig, R.S. (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411, 706-709.

Kondo, Y., Fujita, T., Sugiyama, M. and Fukuda, H. (2015) A novel system for xylem cell differentiation in Arabidopsis thaliana. Mol. Plant 8, 612–621

Kondo, Y., Ito, T., Nakagami, H., Hirakawa, Y., Saito, M., Tamaki, T., et al. (2014) Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat. Commun. 5,3504-.

Kondo, Y., Nurani, A.M., Saito, C., Ichihashi, Y., Saito, M., Yamazaki, K., et al. (2016) Vascular cell induction culture system using Arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell 28, 1250-1262.

Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., et al. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-1860.

Kurihara, D., Mizuta, Y., Sato, Y. and Higashiyama, T. (2015) ClearSee: a rapid optical clearing reagent for whole‐plant fluorescence imaging. Development 142, 4168– 4179.

Liljegren, S. (2010) Phloroglucinol stain for lignin. Cold Spring Harb. Protoc. 2010, pdb prot4954.

Liu, H.L., Xu, Y.Y., Xu, Z.H. and Chong, K. (2007) A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev. Genes Evol. 217, 629-637.

Lucas, W.J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S.R., Helariutta, Y., et al. (2013) The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55, 294-388.

Mähönen, A.P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P.N. and Helariutta, Y. (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root.Genes Dev. 14, 2938-2943.

McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K. (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709-713.

Meshitsuka, G. and Nakano, J. (1979) Studies on the mechanism of lignin color reaction. XIII.

Maule color reaction (9). J. Jap. Wood Res. Soc. 25, 588-594.

Miyashima, S., Roszak, P., Sevilem, I., Toyokura, K., Blob, B., Heo, J.O., et al. (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565, 490-494.

Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C. and Geldner, N. (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci., U.S.A. 109, 10101-10106.

Nurani, A.M., Kondo, Y. and Fukuda, H. (2018) Ectopic Vascular Induction in Arabidopsis Cotyledons for Sequential Analysis of Phloem Differentiation. Methods Mol. Biol. 1830, 149-159.

Nurani, A.M., Ozawa, Y., Furuya, T., Sakamoto, Y., Ebine, K., Matsunaga, S., et al. (2020) Deep Imaging Analysis in VISUAL Reveals the Role of YABBY Genes in Vascular Stem Cell Fate Determination. Plant Cell Physiol. doi.org/10.1093/pcp/pcaa002

Ohashi-Ito, K. and Fukuda, H. (2003) HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol. 44, 1350-1358.

Ohashi-Ito, K., Oda, Y. and Fukuda, H. (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22, 3461-3473.

Okamura, N., Suemoto, T., Furumoto, S., Suzuki, M., Shimadzu, H., Akatsu, H., et al. (2005) Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J. Neurosci. 25, 10857-10862.

Pesquet, E., Ranocha, P., Legay, S., Digonnet, C., Barbier, O., Pichon, M., et al. (2005) Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol. 139, 1821-1839.

Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N. and Clark, S.E. (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61-76.

Sachs, T. (1975) Control of differentiation of vascular networks. Ann. Bot. 39, 197-204.

Sachs, T. (1989) The development of vascular networks during leaf development. Curr. Top. Plant Biochem. Physiol. 8, 168-183.

Saito, M., Kondo, Y. and Fukuda, H. (2018) BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation. Plant Cell Physiol. 59, 590-600.

Saito, M., Nurani, A.M., Kondo, Y. and Fukuda, H. (2017) Tissue culture for xylem differentiation with Arabidopsis leaves. Methods Mol. Biol. 1544, 59-65.

Salazar-Henao, J.E., Vélez-Bermúdez, I.C. and Schmidt, W. (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143, 1848-1858.

Sarojam, R., Sappl, P.G., Goldshmidt, A., Efroni, I., Floyd, S.K., Eshed, Y., et al. (2010) Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 22, 2113-2130.

Sawa, S., Watanabe, K., Goto, K., Liu, Y.G., Shibata, D., Kanaya, E., et al. (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 13, 1079-1088.

Scarpella, E., Marcos, D., Friml, J. and Berleth T. (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015–1027.

Sieburth., L.E. (2007) Plant development: PXY and polar cell division in the procambium. Curr. Biol. 17, R594-R596.

Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N. and Bowman, J.L. (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117-4128.

Sjolund, R.D. (1997). The phloem sieve element: A river runs through it. Plant Cell 9, 1137-1146.

Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Sánchez Rodríguez, F., Wu, M.F., et al. (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565,485-489.

Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.

Stahle, M.I., Kuehlich, J., Staron, L., von Arnim, A.G. and Golz, J.F. (2009) YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell 21, 3105-3118.

Sundell, D., Street, N.R., Kumar, M., Mellerowicz, E.J., Kucukoglu, M., Johnsson, C., et al. (2017) AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29, 1585-1604.

Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W., Gaudinier, A., et al. (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571-575.

Terashima, I. and Saeki, T. (1983) Light environment within a leaf I. optical properties of paradermal Sections of camellia leaves with special reference to differences in the optical properties of palisadeand spongy tissues. Plant Cell Physiol. 24, 1493-1501.

Terashima, I. and Saeki, T. (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann. Bot. 56, 489-499.

Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes, C., Dima, O., et al. (2013) Visualization of plant cell wall lignification using fluorescence-tagged monolignols. Plant J. 76, 357-366.

Ursache, R., Andersen, T.G., Marhavý, P. and Geldner, N. (2018) A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 93, 399-412.

Vallet, C., Chabbert, B., Czaninski, Y. and Monties, B. (1996) Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann. Bot‐London 78, 625-632.

Wallner, E.S., López-Salmerón, V., Belevich, I., Poschet, G., Jung, I., Grünwald, K., et al. (2017) Strigolactone- and Karrikin-independent SMXL proteins are central regulators of phloem formation. Curr. Biol. 27, 1241-1247.

Wu, H. and Zheng, X. F. (2003) Ultrastructural studies on the sieve elements in root protophloem of Arabidopsis thaliana. Acta Botanica Sinica 45, 322-330.

Wurtzel, O., Oderberg, I.M. and Reddien, P.W. (2017) Planarian epidermal stem cells respond to positional cues to promote cell-type diversity. Dev. Cell 40, 491-504.

Xie, B., Wang, X., Zhu, M., Zhang, Z. and Hong, Z. (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 65, 1-14.

Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K. and Demura, T. (2011) VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66, 579-590.

Zhou, J., Zhong, R. and Ye, Z.H. (2014) Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS ONE 9, e105726.

参考文献をもっと見る