リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「On the assumptions leading to the information loss paradox」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

On the assumptions leading to the information loss paradox

Buoninfante, Luca Di Filippo, Francesco Mukohyama, Shinji 京都大学 DOI:10.1007/JHEP10(2021)081

2021.10

概要

The information loss paradox is usually stated as an incompatibility between general relativity and quantum mechanics. However, the assumptions leading to the problem are often overlooked and, in fact, a careful inspection of the main hypothesises suggests a radical reformulation of the problem. Indeed, we present a thought experiment involving a black hole that emits radiation and, independently of the nature of the radiation, we show the existence of an incompatibility between (i) the validity of the laws of general relativity to describe infalling matter far from the Planckian regime, and (ii) the so-called central dogma which states that as seen from an outside observer a black hole behaves like a quantum system whose number of degrees of freedom is proportional to the horizon area. We critically revise the standard arguments in support of the central dogma, and argue that they cannot hold true unless some new physics is invoked even before reaching Planck scales. This suggests that the information loss problem, in its current formulation, is not necessarily related to any loss of information or lack of unitarity. Therefore, in principle, semiclassical general relativity and quantum mechanics can be perfectly compatible before reaching the final stage of the black hole evaporation where, instead, a consistent theory of quantum gravity is needed to make any prediction.

この論文で使われている画像

参考文献

[1] LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary

black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[2] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965) 57

[INSPIRE].

– 21 –

JHEP10(2021)081

compatible before reaching Planck scales where, instead, a consistent theory of quantum

gravity is needed to make any prediction about the final state of black hole evaporation.

A contradiction only arises once the central dogma (B3) is added to the picture. The main

message of this paper is that the problem is not due to an incompatibility between general

relativity and quantum mechanics but, instead, it is due to a contradiction between B2b

and B3 (and so between B2 and B3) independently of B1. To be fair, we should say that,

in the case B, the real incompatibility is between general relativity and the information loss

paradox itself.

Information may or may not be lost due to the formation of an event horizon [68].

However, here we have shown that there is no reason to argue in any direction within the

regime of validity of semiclassical gravity.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[3] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[4] S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976)

2460 [INSPIRE].

[5] S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26

(2009) 224001 [arXiv:0909.1038] [INSPIRE].

[6] W.G. Unruh and R.M. Wald, Information loss, Rept. Prog. Phys. 80 (2017) 092002

[arXiv:1703.02140] [INSPIRE].

[8] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743

[hep-th/9306083] [INSPIRE].

[9] D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].

[10] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of

Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].

[11] G. Penington, Entanglement wedge reconstruction and the information paradox, JHEP 09

(2020) 002 [arXiv:1905.08255] [INSPIRE].

[12] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole

interior, arXiv:1911.11977 [INSPIRE].

[13] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[14] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[15] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes

and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

[16] D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby

universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].

[17] R. Bousso and A. Shahbazi-Moghaddam, Island finder and entropy bound, Phys. Rev. D 103

(2021) 106005 [arXiv:2101.11648] [INSPIRE].

[18] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[19] R.M. Wald, General relativity, Chicago University Prress, Chicago U.S.A. (1984).

[20] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

[21] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[22] G. Dvali, Non-thermal corrections to Hawking radiation versus the information paradox,

Fortsch. Phys. 64 (2016) 106 [arXiv:1509.04645] [INSPIRE].

[23] C. Barcelo, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12

[gr-qc/0505065] [INSPIRE].

– 22 –

JHEP10(2021)081

[7] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291

[gr-qc/9305007] [INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[24] J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an

analogue black hole, Nature Phys. 12 (2016) 959 [arXiv:1510.00621] [INSPIRE].

[25] S. Weinfurtner, Quantum simulation of black-hole radiation, Nature 569 (2019) 634

[INSPIRE].

[26] S. Liberati, G. Tricella and A. Trombettoni, The information loss problem: an analogue

gravity perspective, Entropy 21 (2019) 940 [arXiv:1908.01036] [INSPIRE].

[27] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics,

Commun. Math. Phys. 31 (1973) 161 [INSPIRE].

[29] R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177]

[INSPIRE].

[30] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284

[gr-qc/9310026] [INSPIRE].

[31] L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089]

[INSPIRE].

[32] R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101]

[INSPIRE].

[33] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[34] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[35] D.A. Lowe, Comments on a covariant entropy conjecture, JHEP 10 (1999) 026

[hep-th/9907062] [INSPIRE].

[36] V. Coffman, J. Kundu and W.K. Wootters, Distributed entanglement, Phys. Rev. A 61

(2000) 052306 [quant-ph/9907047] [INSPIRE].

[37] C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W.K. Wootters, Teleporting

an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys.

Rev. Lett. 70 (1993) 1895 [INSPIRE].

[38] S. Mukohyama, Comments on entanglement entropy, Phys. Rev. D 58 (1998) 104023

[gr-qc/9805039] [INSPIRE].

[39] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or

firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[40] J.A. Wheeler, Geometrodynamics and the issue of final state, in Les Houches Summer Shcool

of Theoretical Physics: Relativity, Groups and Topology, C. De Witt and B. DeWitt eds.,

Gordon and Breach, U.S.A. (1964).

[41] H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav. 25 (2008) 205021

[arXiv:0804.2182] [INSPIRE].

[42] E.T. Tomboulis, Renormalization and unitarity in higher derivative and nonlocal gravity

theories, Mod. Phys. Lett. A 30 (2015) 1540005 [INSPIRE].

– 23 –

JHEP10(2021)081

[28] J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems,

Phys. Rev. D 23 (1981) 287 [INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[43] D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017)

086 [arXiv:1704.07728] [INSPIRE].

[44] D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027

[arXiv:1803.07777] [INSPIRE].

[45] J.F. Donoghue and G. Menezes, Gauge assisted quadratic gravity: a framework for UV

complete quantum gravity, Phys. Rev. D 97 (2018) 126005 [arXiv:1804.04980] [INSPIRE].

[46] A. Salvio, Quadratic gravity, Front. in Phys. 6 (2018) 77 [arXiv:1804.09944] [INSPIRE].

[48] R. Percacci, An introduction to covariant quantum gravity and asymptotic safety, in 100

years of general relativity, volume 3, World Scientific, Singapore (2017) [INSPIRE].

[49] M. Reuter and F. Saueressig, Quantum gravity and the functional renormalization group: the

road towards asymptotic safety, Cambridge University Press, Cambridge U.K. (2019).

[50] A.B. Platania, Asymptotically Safe Gravity, Springer Theses, Springer, Germany (2018)

[INSPIRE].

[51] A. Bonanno et al., Critical reflections on asymptotically safe gravity, Front. in Phys. 8

(2020) 269 [arXiv:2004.06810] [INSPIRE].

[52] D. Harlow and E. Shaghoulian, Global symmetry, Euclidean gravity, and the black hole

information problem, JHEP 04 (2021) 175 [arXiv:2010.10539] [INSPIRE].

[53] H. Geng et al., Inconsistency of islands in theories with long-range gravity,

arXiv:2107.03390 [INSPIRE].

[54] H. Omiya and Z. Wei, Causal structures and nonlocality in double holography,

arXiv:2107.01219 [INSPIRE].

[55] G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum

gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[56] V.P. Frolov and I. Novikov, Dynamical origin of the entropy of a black hole, Phys. Rev. D 48

(1993) 4545 [gr-qc/9309001] [INSPIRE].

[57] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys.

Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[58] G.T. Horowitz and J. Polchinski, A Correspondence principle for black holes and strings,

Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

[59] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy,

Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [INSPIRE].

[60] C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 77 (1996) 3288

[gr-qc/9603063] [INSPIRE].

[61] K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004)

5245 [gr-qc/0407052] [INSPIRE].

[62] G. Dvali and C. Gomez, Black hole’s quantum N-portrait, Fortsch. Phys. 61 (2013) 742

[arXiv:1112.3359] [INSPIRE].

[63] G. Dvali and C. Gomez, Black holes as critical point of quantum phase transition, Eur. Phys.

J. C 74 (2014) 2752 [arXiv:1207.4059] [INSPIRE].

– 24 –

JHEP10(2021)081

[47] B. Holdom, Ultra-Planckian scattering from a QFT for gravity, arXiv:2107.01727

[INSPIRE].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[64] G. Dvali and C. Gomez, Quantum compositeness of gravity: black holes, AdS and inflation,

JCAP 01 (2014) 023 [arXiv:1312.4795] [INSPIRE].

[65] G. Dvali, C. Gomez, R.S. Isermann, D. Lüst and S. Stieberger, Black hole formation and

classicalization in ultra-Planckian 2 → N scattering, Nucl. Phys. B 893 (2015) 187

[arXiv:1409.7405] [INSPIRE].

[66] L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole

complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[67] L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49

(1994) 966 [hep-th/9308100] [INSPIRE].

[69] G. ’t Hooft, The scattering matrix approach for the quantum black hole: An Overview, Int.

J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].

[70] P. Betzios, N. Gaddam and O. Papadoulaki, The black hole S-matrix from quantum

mechanics, JHEP 11 (2016) 131 [arXiv:1607.07885] [INSPIRE].

[71] N. Gaddam and N. Groenenboom, Soft graviton exchange and the information paradox,

arXiv:2012.02355 [INSPIRE].

[72] S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53

(2005) 793 [hep-th/0502050] [INSPIRE].

[73] S.A. Hayward, The disinformation problem for black holes (pop version), gr-qc/0504038

[INSPIRE].

[74] S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070]

[INSPIRE].

[75] S.W. Hawking, Information preservation and weather forecasting for black holes,

arXiv:1401.5761 [INSPIRE].

[76] S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116

(2016) 231301 [arXiv:1601.00921] [INSPIRE].

[77] V.P. Frolov, Information loss problem and a ‘black hole‘ model with a closed apparent

horizon, JHEP 05 (2014) 049 [arXiv:1402.5446] [INSPIRE].

[78] V.P. Frolov and A. Zelnikov, Quantum radiation from an evaporating nonsingular black hole,

Phys. Rev. D 95 (2017) 124028 [arXiv:1704.03043] [INSPIRE].

[79] J.M. Bardeen, Black hole evaporation without an event horizon, arXiv:1406.4098 [INSPIRE].

[80] F. D’Ambrosio, M. Christodoulou, P. Martin-Dussaud, C. Rovelli and F. Soltani, End of a

black hole’s evaporation, Phys. Rev. D 103 (2021) 106014 [arXiv:2009.05016] [INSPIRE].

– 25 –

JHEP10(2021)081

[68] M. Visser, Thermality of the Hawking flux, JHEP 07 (2015) 009 [arXiv:1409.7754]

[INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る