リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Behavior of Chameleon Mechanism on F(R) Gravity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Behavior of Chameleon Mechanism on F(R) Gravity

松尾 大和 広島大学

2022.03.23

概要

The equations of motion devised by Newton in the 17th century allowed the motion of objects
to be treated mathematically. In Newtonian mechanics, force was understood as a remote action
acting instantaneously on distant points of matter. In contrast, electromagnetic mechanics,
invented by Maxwell in the 19th century, introduced a field called electromagnetic field to mediate
the force. In this theory, an object such as a magnet generates a magnetic field, and this field
acts on a distant substance to transmit force. This concept is called proximity action as opposed
to distance action. With the birth of electromagnetism, it was discovered that light is a wave
that propagates through an electromagnetic field. This electromagnetic field was thought to be
transmitted through an unknown substance called the ether. According to this conventional idea,
the speed of light changes depending on the relative speed of the inertial system and the ether.
However, actual observation and experiments have shown that the speed of light does not depend
on the inertial system. Einstein’s special theory of relativity showed that there is no such thing as
an absolutely stationary system in time and space, but rather that they are relative to each other
and vary depending on the observer. This discovery led to a unified understanding of Newtonian
mechanics and Maxwell’s electrodynamics. In addition, Einstein developed the general theory of
relativity to describe curved space. With this theory, he succeeded in calculating the movement
of the perihelion of comets, which had been impossible to calculate with Newtonian mechanics.
Despite the success of general relativity, there are still unsolved problems. Three typical
examples are Dark Energy (DE), inflation, and Dark Matter (DM). When the general theory of
relativity was first completed, Einstein thought that the solution that the universe is expanding
was unnatural. Therefore, he added a cosmological constant term to the Einstein equation to
cancel out the expansion. However, Hubble’s observation of the redshift of galaxies revealed that
the distance between two galaxies increases the relative velocity of their separation from each
other. This fact led to the discovery that the universe is expanding at an accelerating rate. To
explain this accelerated expansion, we need an unknown energy (DE) whose density does not
diminish with the expansion of the universe, and the cosmological constant added by Einstein
corresponds to this DE. The cosmological constant written by Einstein is equivalent to this DE.
There are various possible origins of this DE. For example, in quantum field theory, the vacuum
has a constant energy. However, this energy has the Planck scale Mpl ∼ O(1038 )GeV 2 , which is
123 orders of magnitude higher than the DE energy scale Λ ∼ O(1085 )GeV 2 . Therefore, theories
to explain this hierarchy and the effects that produce DE are currently being studied.
The second unsolved problem is the inflationary universe, which was the subject of the Big
Bang theory proposed by G. Gamow in 1928, which states that the universe began as a ball of
fire. In 1928, G. Gamow proposed the big bang theory that the universe began as a ball of fire.
However, this theory raised the problems of flatness, in which the present universe is extremely
flat, the horizon problem, in which there are correlations in regions of space that cannot be
causally related, and the monopole problem, which has been predicted by the grand unified
theory but has not yet been found [1, 2]. The inflationary universe was devised as a solution
to these problems. In this theory, the universe expands rapidly at the beginning, and then the
expansion energy is instantaneously dissipated into heat energy to produce particles. However,
general relativity cannot induce the inflation that is said to have occurred at the beginning of
the universe. ...

この論文で使われている画像

参考文献

[1] D. Langlois, Lect. Notes Phys. 800, 1-57 (2010) doi:10.1007/978-3-642-10598-2 1

[arXiv:1001.5259 [astro-ph.CO]].

[2] A. Linde, doi:10.1093/acprof:oso/9780198728856.003.0006 [arXiv:1402.0526 [hep-th]].

[3] T. Clifton and J. D. Barrow, Phys. Rev. D 72, no.10, 103005 (2005) [erratum: Phys. Rev.

D 90, no.2, 029902 (2014)] doi:10.1103/PhysRevD.72.103005 [arXiv:gr-qc/0509059 [gr-qc]].

[4] S. Nojiri and S. D. Odintsov, eConf C0602061, 06 (2006) doi:10.1142/S0219887807001928

[arXiv:hep-th/0601213 [hep-th]].

[5] S.

Nojiri

and

S.

D.

Odintsov,

Phys.

Rept.

doi:10.1016/j.physrep.2011.04.001 [arXiv:1011.0544 [gr-qc]].

505,

59-144

(2011)

[6] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Phys. Rept. 513, 1-189 (2012)

doi:10.1016/j.physrep.2012.01.001 [arXiv:1106.2476 [astro-ph.CO]].

[7] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept. 692, 1-104 (2017)

doi:10.1016/j.physrep.2017.06.001 [arXiv:1705.11098 [gr-qc]].

[8] S. Capozziello, R. D’Agostino and O. Luongo, Int. J. Mod. Phys. D 28, no.10, 1930016

(2019) doi:10.1142/S0218271819300167 [arXiv:1904.01427 [gr-qc]].

[9] M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71-78 (1996) doi:10.1143/PTP.95.71

[arXiv:astro-ph/9507001 [astro-ph]].

[10] C. M. Peterson and M. Tegmark, Phys. Rev. D 87, no.10,

doi:10.1103/PhysRevD.87.103507 [arXiv:1111.0927 [astro-ph.CO]].

103507 (2013)

[11] X. Gao, T. Li and P. Shukla, JCAP 10, 008 (2014) doi:10.1088/1475-7516/2014/10/008

[arXiv:1403.0654 [hep-th]].

[12] J. Elliston, D. Seery and R. Tavakol, JCAP 11, 060 (2012) doi:10.1088/14757516/2012/11/060 [arXiv:1208.6011 [astro-ph.CO]].

[13] D. J. Brooker, S. D. Odintsov and R. P. Woodard, Nucl. Phys. B 911, 318-337 (2016)

doi:10.1016/j.nuclphysb.2016.08.010 [arXiv:1606.05879 [gr-qc]].

[14] J. O. Gong and T. Tanaka, JCAP 03, 015 (2011) [erratum: JCAP 02, E01 (2012)]

doi:10.1088/1475-7516/2012/02/E01 [arXiv:1101.4809 [astro-ph.CO]].

[15] J. O. Gong, JCAP 05, 041 (2015) doi:10.1088/1475-7516/2015/05/041 [arXiv:1409.8151

[astro-ph.CO]].

[16] L. Sebastiani, G. Cognola, R. Myrzakulov, S. D. Odintsov and S. Zerbini, Phys. Rev. D 89,

no.2, 023518 (2014) doi:10.1103/PhysRevD.89.023518 [arXiv:1311.0744 [gr-qc]].

[17] H. A. Buchdahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970).

47

[18] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980) [Phys. Lett. 91B, 99 (1980)] [Adv. Ser.

Astrophys. Cosmol. 3, 130 (1987)]. doi:10.1016/0370-2693(80)90670-X

[19] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Class. Quant. Grav. 34, no. 24, 245012

(2017) doi:10.1088/1361-6382/aa92a4 [arXiv:1704.05945 [gr-qc]].

[20] S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 96, no. 2, 024029 (2017)

doi:10.1103/PhysRevD.96.024029 [arXiv:1704.02931 [gr-qc]].

[21] S. D. Odintsov, V. K. Oikonomou and L. Sebastiani, Nucl. Phys. B 923, 608 (2017)

doi:10.1016/j.nuclphysb.2017.08.018 [arXiv:1708.08346 [gr-qc]].

[22] S. D. Odintsov, D. Saez-Chillon Gomez and G. S. Sharov, Eur. Phys. J. C 77, no. 12, 862

(2017) doi:10.1140/epjc/s10052-017-5419-z [arXiv:1709.06800 [gr-qc]].

[23] H. Motohashi and A. A. Starobinsky, Eur. Phys. J. C 77, no. 8, 538 (2017)

doi:10.1140/epjc/s10052-017-5109-x [arXiv:1704.08188 [astro-ph.CO]].

[24] T. Katsuragawa and S. Matsuzaki, Phys. Rev. D 95,

doi:10.1103/PhysRevD.95.044040 [arXiv:1610.01016 [gr-qc]].

no. 4,

044040 (2017)

[25] T. Katsuragawa and S. Matsuzaki, Phys. Rev. D 97, no. 6, 064037 (2018) Erratum:

[Phys. Rev. D 97, no. 12, 129902 (2018)] doi:10.1103/PhysRevD.97.129902, 10.1103/PhysRevD.97.064037 [arXiv:1708.08702 [gr-qc]].

[26] S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59 (2011) doi:10.1016/j.physrep.2011.04.001

[arXiv:1011.0544 [gr-qc]].

[27] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept. 692, 1 (2017)

doi:10.1016/j.physrep.2017.06.001 [arXiv:1705.11098 [gr-qc]].

[28] N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].

[29] J.

Khoury

and

A.

Weltman,

Phys.

Rev.

doi:10.1103/PhysRevD.69.044026 [astro-ph/0309411].

69,

044026

(2004)

[30] P. Brax, C. van de Bruck, A. C. Davis and D. J. Shaw, Phys. Rev. D 78, 104021 (2008)

doi:10.1103/PhysRevD.78.104021 [arXiv:0806.3415 [astro-ph]].

[31] J.

A.

R.

Cembranos,

Phys.

Rev.

Lett.

102,

doi:10.1103/PhysRevLett.102.141301 [arXiv:0809.1653 [hep-ph]].

141301

(2009)

[32] Corless, R.M., Gonnet, G.H., Hare, D.E.G. et al. Adv Comput Math (1996) 5: 329.

https://doi.org/10.1007/BF02124750

[33] A. A. Starobinsky, JETP Lett. 86,

[arXiv:0706.2041 [astro-ph]].

157 (2007) doi:10.1134/S0021364007150027

[34] T. Katsuragawa, S. Matsuzaki and K. Homma, [arXiv:2107.00478 [gr-qc]].

48

[35] T. Inagaki, Y. Matsuo and H. Sakamoto, Int. J. Mod. Phys. D 28 (2019) no.12, 1950157

doi:10.1142/S0218271819501578 [arXiv:1905.05503 [gr-qc]].

[36] T. Inagaki, Y. Matsuo and H. Shimoji, Symmetry

doi:10.3390/sym11040451 [arXiv:1903.04244 [hep-th]].

11

(2019)

no.4,

451

[37] Z. Huang, (2011), https://www.cita.utoronto.ca/ zqhuang/hlat/lattice.pdf

[38] C. Fu, P. Wu and H. Yu, Phys. Rev. D 99 (2019)

doi:10.1103/PhysRevD.99.123526 [arXiv:1906.00557 [astro-ph.CO]].

no.12,

123526

[39] A. D. Linde, Phys. Lett. B 108 (1982), 389-393 doi:10.1016/0370-2693(82)91219-9

[40] T. Inagaki and H. Sakamoto, Int. J. Mod. Phys. D 29, no.02, 2050012 (2020)

doi:10.1142/S0218271820500121 [arXiv:1909.07638 [gr-qc]].

[41] H. Motohashi, Phys. Rev. D 91, 064016 (2015) doi:10.1103/PhysRevD.91.064016

[arXiv:1411.2972 [astro-ph.CO]].

[42] L. H. Liu, doi:10.1007/s10773-018-3809-0 [arXiv:1807.00666 [gr-qc]].

[43] I. Ben-Dayan, S. Jing, M. Torabian, A. Westphal and L. Zarate, JCAP 09, 005 (2014)

doi:10.1088/1475-7516/2014/09/005 [arXiv:1404.7349 [hep-th]].

[44] S. D. Odintsov, V. K. Oikonomou and L. Sebastiani, Nucl. Phys. B 923, 608-632 (2017)

doi:10.1016/j.nuclphysb.2017.08.018 [arXiv:1708.08346 [gr-qc]].

[45] R. Myrzakulov, S. Odintsov and L. Sebastiani, Phys. Rev. D 91, no.8, 083529 (2015)

doi:10.1103/PhysRevD.91.083529 [arXiv:1412.1073 [gr-qc]].

[46] T. Katsuragawa and S. Matsuzaki, Phys. Rev. D 95,

doi:10.1103/PhysRevD.95.044040 [arXiv:1610.01016 [gr-qc]].

no.4,

044040 (2017)

[47] T. Katsuragawa and S. Matsuzaki, Phys. Rev. D 97, no.6, 064037 (2018) [erratum: Phys.

Rev. D 97, no.12, 129902 (2018)] doi:10.1103/PhysRevD.97.064037 [arXiv:1708.08702 [grqc]].

[48] J. Mathew, J. P. Johnson and S. Shankaranarayanan, Gen. Rel. Grav. 50, no.7, 90 (2018)

doi:10.1007/s10714-018-2410-4 [arXiv:1705.07945 [gr-qc]].

[49] J. P. Johnson, J. Mathew and S. Shankaranarayanan, Gen. Rel. Grav. 51, no.3, 45 (2019)

doi:10.1007/s10714-019-2531-4 [arXiv:1706.10150 [gr-qc]].

[50] D. D. Canko, I. D. Gialamas and G. P. Kodaxis, Eur. Phys. J. C 80, no.5, 458 (2020)

doi:10.1140/epjc/s10052-020-8025-4 [arXiv:1901.06296 [hep-th]].

49

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る