リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「数値計算を用いたインレット構成に関する小型イオンスラスタおよび中和器内部におけるイオンおよび中性粒子の挙動解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

数値計算を用いたインレット構成に関する小型イオンスラスタおよび中和器内部におけるイオンおよび中性粒子の挙動解析

アリ, ユセフィアン ALI, YOUSEFIAN 九州大学

2020.09.25

概要

Our research focuses on the simulation of plasma particles within a miniature ion thruster and neutralizer. It is well known that the electron density distribution and microwave plasma coupling plays a major role in determining the performance of a miniature thruster. However, the impact of neutral density distribution and neural recycle rate within the thruster is not well studied. Since the neutral density can easily be influenced and altered with simple changes made to the gas inlet configuration, we developed the hypothesis that altering the gas inlet configuration within a neutralizer and ion thruster would lead to significant changes to the natural density distribution and consequently possible changes to the ionization pattern, ion density and neutral recycle rate. With that in mind we aimed to develop an all-inclusive 3D FDTD-PIC simulation of plasma inside the discharge chamber where all particles (ions, electrons and neutrals) are treated as active particles. At first we developed a neutrals only 3D PIC code to evaluate the impact of neutrals density distribution inside a neutralizer to test the assumption that inlet configuration can alter the neutral density significantly. This simulation resulted in a clear observation of the changes within the discharge chamber in neutral density distribution with regards to the inlet changes.

Next we developed a simplified ion-neutral code where the effects of electromagnetic field was ignored, to analyze the neutral recycle impact within a neutralizer and test the assumption that the inlet configuration has the potential to alter the neutral recycle rate pattern within the discharge chamber as a result of gas inlet configuration. Although this simulation had limited scope in terms of accuracy (the electromagnetic field being ignored) it showed the potential to alter the ion loss pattern by adjusting the gas inlet configuration. With this result we worked on developing a full 3D FDTD-PIC simulation of a miniature ion thruster with a Poisson solver to fully analyze the impact of gas inlet configuration of neutral and ion density and neutral recycle rate within the discharge chamber. We incorporated a very fine mesh size of 0.1 mm and decided to not include an artificial sheath potential as a first step in developing a more realistic simulations. Although our current code cannot simulate the plasma sheath as accurately as we hope due to the large mesh size, due to our current hardware limitations we hope this code would be a stepping stone in the near future were advancements in hardware technology will allow for a simulation with a much smaller mesh size to enable sheath simulation. With that limitation in mind we set to analyze the ion-neutral behavior for two candidate antennas (L shaped and Disk shaped) as well as four candidate inlet configurators.

The simulation results indicated a clear shift in ion and neutral densities towards the gas inlet especially in the single horizontal inlet configurations for both antenna shapes. However the impact for the L shaped antenna was more prominent. On the other hand, the four horizontal inlet configuration led to a significantly higher rate of ionization in the vicinity of the disk shaped antenna which was then counteracted by neutral recycle impact. Moreover, the simulation of the neutral recycle rate showed a clear pattern towards the position of the gas inlet where the single inlets experienced and increased rate of ion loss in the walls closer to the inlets. Despite these changes, the average ion and neutral densities in the discharge chamber remained largely unchanged leading to the conclusion that the changes in the ionization pattern and ion density are mainlylocal and may not translate into larger meaningful outcomes for the engine performance. Despite this, we recommend further research into the possibility of the single horizontal inlet configuration for the Lshaped antenna and the four horizontal inlets configuration for the disk shaped antenna as an alternative. Further experiments are recommended to assess the impact of these recommendations for the proposed engines.

この論文で使われている画像

参考文献

[1]. Futron Corporation, “Space transportation costs: trends in price per pound to orbit 1990- 200,” Tech. Rep., 2002.

[2]. R. J. Cybulski, D. M. Shellhammer, R. R. Lovell, E. Domino, and J. T. Kotnik, “Results from SERT I ion rocket flight test,” National Aeronautics and Space Administration Glenn Research Center (formerly Lewis Research Center), Tech. Rep., 1965.

[3]. R. Killinger, H. Bassner, G. Kienlein, and J. Müller, “Electric propulsion system for ARTEMIS,” in The 26th International Electric Propulsion Conference, Kitakyushu, Japan, 1999.

[4]. J. R. Brophy, M. A. Etters, J. Gates, C. E. Garner, M. Klatte, C. J. Lo, M. G. Marcucci, S. Mikes, M. Mizukami, B. Nakazono, and G. Pixler, “The Dawn ion propulsion system- getting to launch,” in The 30th International Electric Propulsion Conference, Florence, Italy, 2007.

[5]. K. Kuriki, Y. Arakawa, “Introduction to Electric Propulsion Rocket”, the University of Tokyo Press, 2003

[6]. M. Shintani , “Numerical Analysis of Microwave Discharge Type Compact Ion Engine”, Masters Thesis (in Japanese). Kyushu University Fukuoka, Japan, 2010.

[7]. R. G. John, “Physics of Electric Propulsion ", 1968, 2-23.

[8]. S. Hosoda and H. Kuninaka, “The homeward journey of asteroid explorer ”Hayabusa” powered by the ion engines,” Journal of Plasma and Fusion Research, Vol. 86 (No.5), pp. 282– 292, 2010.

[9]. S. S. H. Kuninaka, “Development of microwave discharge ion thruster for asteroid sample return mission,” 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Vol. AIAA-1996-2979, 1996

[10]. M. Kato, S. Takayama, K. Yoshihara, and H. Hashimoto, Congress paper IAC-05.B5.01, 2005

[11]. H. Sahara, S. Nakasuka, and C. Kobayashi, AIAA paper 2005-3956, 2005

[12]. J. Muller, C. Marrese, J. Polk, E. Yang, A. Green, V. White, D. Bame, I. Chadraborty and S. Vargo, Acta Astronomica , Vol 52 , 2003 , pp 881-895

[13]. P. J. Wilbur, V. K. Rawlin, and J. R. Beattie, Journal of propulsion and power , Vol 14 , 1998 , pp 708-715

[14]. Micci, M. M. and Ketsdever, A. D.: Micropropulsion for Small Spacecraft, American Institute of Aeronautics and Astronautics, Washington, D.C., 2000

[15]. N. Yamamoto, H. Katahara, H. Masui, H. Ijiri, and H. Nakashima, AJCPP2005-22093, 2005

[16]. M. Hirakawa and M. Nakakita, Simulation of Electron Cyclotron Resonance in a Microwave Discharge Ion Thruster, Journal of Japan Society for Aeronautical and Space Sciences .Vol.47, pp.267-271, 1999 (in Japanese)

[17]. T.Kanagawa, N.Yamamoto, Y. Kajimura and H. Nakashima, “ Numerical Simulation of Internal Plasma in a Miniature Microwave Discharge Ion Thruster” IEPC-2007-190

[18]. N.Yamamoto, H. Kataharada, T. Chikaoka, H. Masui, and H.Nakashima,IEPC-2005-036, 2005.

[19]. H. Masui, T. Tanoue, H. Nakashima and I. Funaki, 24th International Symposium on Space Technology and Science, paper ISTS 2004-b-11, 2004.

[20]. Y. Takao, H. Masui, T. Miyamoto, H. Kataharada, H. Ijiri and H. Nakashima, Vacuum, Vol.73, pp.449-454 , 2004.

[21]. T. Ezaki, N. Yamamoto, T. Tsuru, Y. Kotani, H. Nakashima, N. Yamazaki, K. Tomita and K. Uchino, Japan Society for Aeronautical and Space Sciences, Vol.8, No 27, pp 55-59, 2010.

[22]. H. Masui, Y. Tashiro, N. Yamamoto, H. Nakashima and I. Funaki, Japan Society for Aeronautical and Space Sciences, Vol.49, No. 164 , pp 87-93 , 2006.

[23]. Y. Takao, H. Koizumi, K. Eriguchi, K. Komurasaki, and K. Ono, “Three-dimensional Particle in Cell Simulation of Miniature Plasma Source for a Microwave Discharge Ion Thruster” , Plasma Source Sci. Technol, Vol.23, pp 64004-64015 ,2012.

[24]. M. Tsuru , Performance Optimization of Miniature Microwave Discharge Neutralizer, Master’s Thesis. Kyushu University, Fukuoka, Japan, 2008, (in Japanese).

[25]. M. Hirakawa, and Y. Arakawa, Plasma Particle Simulation in Cusped Ion Thrusters. 1993, IEPC-93-242.

[26]. D. M. Goebel, R. E. Wirz, and I. Katz, Analytical Ion Thruster Discharge Performance Model. AIAA paper 4486. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, CA 2006.

[27]. Y. Takao, H. Koizumi, K. Komurasaki, K. Eriguchi and K. Ono, Plasma Sources Science and Technology, Vol 23, No 6, pp.1-6 , 2014.

[28]. G. M. Sandonato, J. J. Barroso, and A. Montes, Magnetic Confinement Studies for Performance Enhancement of a 5-cm Ion Thruster. IEEE Transactions on Plasma Science 24, 6, , pp.1319–1329, 1996.

[29]. A. Yousefian, N. Yamamoto, proceedings, 62nd Space Science and Technology Conference (UKAREN), not peer reviewed, Kurume City, Fukuoka 24-26 Oct, 2018.

[30]. H. Masui , Numerical analysis of microwave discharge type plasma propulsion plasma source, Doctoral Thesis. Kyushu University, Fukuoka, Japan, 2005, (in Japanese).

[31]. K. Ushio , Study on microwave discharge type small plasma thruster, Doctoral Thesis. Kyushu University, Fukuoka, Japan, 2018, (in Japanese).

[32]. Mahalingam, S. and Menart, J., “Computational Model Tracking Primary Electrons, Secondary Electrons and Ions in the Discharge Chamber of an Ion Engine,” AIAA Paper No. 2005- 4253, 2005.

[33]. Mahalingam, S. and Menart, J., ”Computational Study of Primary Electron Confinement by Magnetic Fields in the Discharge Chamber of an Ion Engine,” Journal of Propulsion and Power, Vol. 23, pp. 69-72, 2007.

[34]. Mahalingam, S., Choi, Y., Loverich, J., Stoltz, P.H., Jonell, M., and Menart, J., ”Dynamic Electric Field Calculations Using a Fully Kinetic Ion Thruster Discharge Chamber Model,” AIAA Paper 2010-6944, 2010.

[35]. Stueber, T., “Ion Thruster Discharge Chamber Simulation in Three Dimensions,” AIAA Paper No. 2005- 3688, 2005.

[36]. Stueber, T., “Discharge Chamber Primary Electron Modeling Activities in 3-Dimensions,” AIAA Paper No. 2004-4105, 2004.

[37]. Boeuf, J.P. and Garrigues, L., “Low Frequency Oscillations in a Stationary Plasma Thruster,” Journal of A pplied Physics, Vol. 84, pp. 3541-3554 , 1998.

[38]. C. K. Birdsall , Particle in Cell Charged-Particle Simulations plus Monte-Carlo collisions with Neutral Atoms, PIC-MCC, IEEE Transactions On Plasma Science, Vol 19 , pp 65-85 , 1991

[39]. I. D. Boyd, D. B. Vangilder, X. Liu , “ Monte Carlo Simulation of Neutral Xenon Flows Of Electric Propulsion Devices” IEPC-97-020

[40]. D. Heifetz, D. Post , M. Petravic , J Weisheit and G. Bateman , A Monte-Carlo Model of Neutral-Particle Transport in Diverted Plasmas , Journal of Computational Physics , No 46 , pp 309-327 , 1982

[41]. D. J. Economou, T. J. Bartel, R. S. Wise, and D. P. Lymberopoulos , Two Dimensional DSMC of Reactive Neutral and Ion Flow in High Density Plasma Reactor , IEEE Transactions On Plasma Science, Vol 23 , No 4 , pp 581-590 , 1995

[42]. R. K. Porteous and D. B. Graves , Modeling and Simulation of Magnetically Confined Low Pressure Plasma in two Dimensions , IEEE Transactions On Plasma Science, Vol 19 , pp 204-213 , 1991

[43]. C. K. Birdsall , Particle in Cell Charged-Particle Simulations plus Monte-Carlo collisions with Neutral Atoms, PIC-MCC, IEEE Transactions On Plasma Science, Vol 19 , pp 65-85 , 1991

[44]. Y. Sentoku , K. Mima , Y. Kishimoto , M. Honda , Effects of Relativistic Binary Collison’s on PIC Simulations of Laser Plasmas , Journal of Physical Society of Japan , Vol 67 , No 12 , pp 4048-4088 , 1998.

[45]. T. Takizuka and H. Abe , A Binary Collision Model for Plasma Simulation with a Particle Code , Journal of Computational Physics , Vol 25 , pp 205-219 , 1977

[46]. H. Okuda , C. K. Birdsall and A. B. Langdon , Methods in Computational Physics, Vol 9, p 241 , Academic Press , New York , 1970

[47]. D. Y. Oh and D. E. Hastings , Computational Modeling of Expanding Plumes in Space Using a PIC-DSMC Algorithm , IEPC-97-179 , 1997

[48]. Vacuum Handbook New Edition ,ULVAC, pp 40-47 , 2002 (in Japanese).

[49]. Komurasaki, K. and Arakawa, Y., “Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster,” Journal of Propulsion and Power, Vol. 11, pp. 1317-1323, 1995.

[50]. Fife, J.M., Martinez-Sanchez, M., and Szabo, J., “A Numerical Study of Low-Frequency Oscillations in Simulation of Electric Propulsion Thrusters Hall Thrusters,” AIAA Paper No. 97- 3052, 1997

[51]. Hagelaar, G.J.M., Bareilles, J., Garrigues, L., and Boeuf, J.P., “Two-Dimensional Model of a Stationary Plasma Thruster,” Journal of A pplied Physics, Vol. 91, pp. 5592-5598 , 2002.

[52]. Garrigues, L., Hagelaar, G.J.M., Bareilles, J., Boniface, C., and Boeuf, J.P., “Model Study of the Influence of the Magnetic Field Configuration on the Performance and Lifetime of a Hall Thruster,” Physics of Plasmas, Vol. 10, pp. 4886-4892, 2003.

[53]. Bareilles, J., Hagelaar, G.J.M., Garrigues, L., Boniface, C., Boeuf, J.P., and Gascon, N., “Critical Assessment of a Two-Dimensional Hybrid Hall Thruster Model: Comparisons With Experiments,” Physics of Plasmas, Vol. 11, pp. 3035-3046, 2004.

[54]. Boniface, C., Hagelaar, G.J.M., Garrigues, L., Boeuf, J.P., and Prioul, A., “Modeling of Double Stage Hall Effect Thruster,” IEEE Transactions on Plasma Science, Vol. 33, pp. 522-523 , 2005.

[55]. A. Yousefian, N. Yamamoto, “Neutral Density and Recycle Analysis in a Miniature Neutralizer Utilizing Particle In Cell Simulation with Respect to Inlet Configuration”, Frontier of Applied Plasma Technology, peer reviewed, Vol. 13, No. 1, pp 7-12 , 2020

[56]. K. Kubota , H. Watanabe , N. Yamamoto , H. Nakashima , T. Miyasaka , I. Funaki , “Numerical Simulation of Microwave Neutralizer Including Ion’s Kinetic Effects”, American Institute of Aeronautics and Astronautics , 3831, 2014

[57]. K. Kubota , H. Watanabe , N. Yamamoto , H. Nakashima , T. Miyasaka , I. Funaki , “Three- dimensional Hybrid-PIC Analysis on Electron Extraction of a Microwave Neutralizer”, Journal Of The Japan Society For Aeronautical And Space Sciences , Vol. 63, No. 5, pp 1997-203 , 2015

[58]. V. Vahedi, M. Surendra, “A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges”, Computer Physics Communications, Vol 87 pp 179- 198, 1995

[59]. K. Minami , “Computer Analysis Series 7 Numerical Simulation Using Atomic and Molecular Models” , The Japan Society of Mechanical Engineers, Corona Publishing , 1996 (in Japanese).

[60]. R. W. Hockney, and J. W. Eastwood, Computer Simulation using Particles, Taylor & Francis Group, New York, 1988.

[61]. M. Hayashi, Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Xenon , National Institute for Fusion Science database , NIFS-DATA-079, 2003

[62]. M. Kusuda, Y. Sasagawa, N. Yamamoto and H. Nakashima, “Numerical Simulation Analysis of Microwave Discharge Neutralizer Internal Physics” Proceedings of Space Transportation Symposium-011, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency , Sagamihara, Kanagawa Japan , 2013 (in Japanese).

[63]. M. Kusuda, Y. Sasagawa, N. Yamamoto and H. Nakashima, “Two-Dimensional Numerical Analysis of a Miniature Microwave Discharge Neutralizer” , Japan Society for Aeronautical and Space Sciences-S026, 2011 (in Japanese).

[64]. H. Koizumi and H. Kuninaka , “Miniature Microwave Discharge Ion Thruster Driven by 1 Watt Microwave Power” Journal of Propulsion & Power, Vol 26, pp601-604, 2010.

[65]. H. Masui, U. Tashiro, N. Yamamoto, H. Nakashima, I. Funaki, “Analysis of Electron and Microwave Behaviour in Microwave Discharge Neutralizer” Transactions Of The Japan Society For Aeronautical And Space Sciences, Aerospace Technology Japan Vol 49,pp 87-93, 2005.

[66]. K. Kubota, H. Watanabe, N. Yamamoto, H. Nakashima, T. Miyasaka, I. Funkai, “Three Dimensional Hybrid-PIC Analysis on Electron Extraction of a Microwave Neutralizer” Proceedings of the Japan Aeronautics and Space Administration Vol 63, issue 5 , pp197-203, 2015.

[67]. M. Nakashima, Microwave Engineering – Foundations and Principles, Morikita Electrical Engineering Series 3, pp 67-69, 1995.

[68]. H. Kousaka, K. Ono, “Numerical Analysis of the Electromagnetic Fields in a Microwave Plasma Source Excited by Azimuthally Surface Waves” Japan Journal of Physics. Vol 41, pp 2199-2206, 2002.

[69]. K. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media” IEEE Trans, Vol 14 , pp 802-307 ,1966.

[70]. F.Chen. Francis, in Introduction to Plasma Physics and Controlled Fusion, 2nd ed. by Plenum Publishing Corporation, 1974 .

[71]. K. Sugita , Microwave frequency dependence of small microwave discharge type ion thruster , Master’s Thesis. Kyushu University, Fukuoka, Japan, 2011, (in Japanese).

[72]. N. Yamamoto, K. Tomita, N. Yamasaki, T. Tsuru, T. Ezaki, Y. Kotani, K. Uchino, H. Nakashima, “Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique”, Plasma Sources Science and Technology. Vol 19, No 4, 2010.

[73]. Y. Nakayama, K. Narisawa, “Neutral Density Measurement of Ion Thruster with Differential Pressure Gauge”, Transactions Of The Japan Society For Aeronautical And Space Sciences. Vol 12, No 29, pp 73-78 , 2014.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る