リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel characteristic length of detonation relevant to supercritical diffraction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel characteristic length of detonation relevant to supercritical diffraction

Kawasaki, A. Kasahara, J. 名古屋大学

2020.01

概要

For stoichiometric C2H4–O2 and C2H2–O2 mixtures with or without argon dilution, the processes of detonation diffraction have been investigated in a two-dimensional setup through high-speed schlieren imaging, with the characteristic length and the stability of detonation varied by regulating the initial pressure and argon mole fraction of the mixture. In particular, a length relevant to the process of supercritical diffraction (i.e., distance from the channel end corner to reflection point of the transverse detonation on the channel end face, reflection point distance in short) was deduced from obtained sequential schlieren images and analyzed. The reflection point distance can be idealized for the infinitely wide donor channel, and thus, it can be a parameter in which properties intrinsic to each detonable mixture are manifested. Experimental results showed that the reflection point distance was roughly inversely proportional to the initial pressure for identical mixtures and independent of the width of the donor channel at high initial pressures. For a certain combination of the fuel and oxidizer, correlations between the reflection point distance and the initial partial pressure of fuel were very similar regardless of the argon mole fraction. Critical conditions of the diffraction problem could be given for the ratio of the reflection point distance to the channel width, and it was suggested that the critical value lies in a range of 3–5 and does not significantly depend on the stability of the mixture.

この論文で使われている画像

参考文献

417

418

[1]

419

Lee, J.H.S.: On the critical diameter problem. In: Bowen, J.R. (ed.) Dynamics of Exothermicity, Gordon

and Breach Publishers, Netherlands, pp. 321–335 (1996)

420

[2]

Lee, J.H.S.: The Detonation Phenomena. Cambridge University Press, New York (2008)

421

[3]

Zel’dovich, Y.B., Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation in

422

423

gases. Sov. Phys. Tech. Phys. 1, 1689–1713 (1957)

[4]

424

425

Lee, J.H.S.: Dynamic parameter of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336 (1984)

https://doi.org/10.1146/annurev.fl.16.010184.001523

[5]

Matsui, H., Lee, J.H.: On the measure of the relative detonation hazards of gaseous fuel-oxygen and

426

air-mixtures. Symp. (Int.) Combust. 17, 1269–1280 (1978)

427

https://doi.org/10.1016/S0082-0784(79)80120-4

428

[6]

429

430

Mitrofanov, V.V., Soloukhin, R.I.: The diffraction of multi-front detonation waves. Sov. Phys. Dokl. 9,

1055–1058 (1965)

[7]

Edwards, D.H., Thomas, G.O., Nettleton, M.A.: The diffraction of a planar detonation wave at an abrupt

431

area change. J. Fluid Mech. 95, 79–96 (1979)

432

https://doi.org/10.1017/S002211207900135X

433

434

[8]

Edwards, D.H., Thomas, G.O., Nettleton, M.A.: Diffraction of planar detonation in various fuel-oxygen

mixtures at an area change. Gasdynamics of Detonations and Explosions, Prog. Astronaut. Aeronaut, AIAA,

26

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

435

75, 341–357 (1981)

436

https://doi.org/10.2514/4.865497

437

[9]

Moen, I.O., Murray, S.B., Bjerketvedt, D., Rinnan, A., Knystautas, R., Lee, J.H.: Diffraction of detonation

438

initiation from tubes into a large fuel-air explosive cloud. Symp. (Int.) Combust. 19, 635–645 (1982)

439

https://doi.org/10.1016/S0082-0784(82)80238-5

440

[10]

441

hydrocarbon-air mixture. Combust. Flame. 48, 63–83 (1982)

442

443

Knystautas, R., Lee, J.H.S., Guirao, C.M.: The critical tube diameter for detonation failure in

https://doi.org/10.1016/0010-2180(82)90116-X

[11]

Liu, Y.K., Lee, J.H., Knystautas, R.: Effect of geometry on the transmission of detonation through an

444

orifice. Combust. Flame. 56, 215-225 (1984)

445

https://doi.org/10.1016/0010-2180(84)90038-5

446

[12]

Benedick, W.B., Knystautas, R., Lee, J.H.S.: Large-Scale Experiments on the Transmission of Fuel-Air

447

Detonations from Two-Dimensional Channels. Dynamics of Shock Waves, Explosions, and Detonations,

448

Prog. in Astronaut. Aeronaut., AIAA, 94, 546–555 (1984)

449

https://doi.org/10.2514/5.9781600865695.0546.0555

450

451

[13]

Thomas, G.O., Edwards, D.H., Lee, J.H., Knystautas, R., Moen, I.O., Wei, Y.M.: Detonation Diffraction by

Divergent Channels. Dynamics of Explosions, Prog. in Astronaut. Aeronaut., AIAA, 106, 144–154 (1986)

27

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

452

453

https://doi.org/10.2514/5.9781600865800.0144.0154

[14]

Shepherd, J.E., Moen, I.O., Murray, S.B., Thibault, P.A.: Analyses of the cellular structure of detonations.

454

Symp. (Int.) Combust. 21, 1649–1658 (1986)

455

https://doi.org/10.1016/S0082-0784(88)80398-9

456

[15]

Moen, I.O., Sulmistras, A., Thomas, G.O., Bjerketvedt, D., Thibault, P.A.: Influence of cellular regularity

457

on the behavior of gaseous detonations. Dynamics of Explosions, Prog. Astronaut. Aeronaut., AIAA, 106,

458

220–243 (1986)

459

https://doi.org/10.2514/5.9781600865800.0220.0243

460

[16]

Desbordes, D., Gauerraud, C., Hamada, L., Presles, H.N.: Failure of the classical dynamic parameters

461

relationships in highly regular cellular detonation systems. Dynamic Aspects of Detonations, Prog.

462

Astronaut. Aeronaut., AIAA, 153, 347–359 (1993)

463

https://doi.org/10.2514/4.866265

464

[17]

Meredith, J., Ng, H.D., Lee, J.H.: Detonation diffraction from an annular channel. Shock Waves. 20, 449–

465

455 (2010)

466

https://doi.org/10.1007/s00193-010-0256-0

467

468

[18]

Arienti, M., Shepherd, J.E.: A Numerical Study of Detonation Diffraction. J. Fluid Mech. 529, 117–146

(2005)

28

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

469

470

https://doi.org/10.1017/S0022112005003319

[19]

Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonations.

471

J. Fluid Mech. 421, 147–183 (2000)

472

https://doi.org/10.1017/S0022112000001555

473

[20]

Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall

474

tubes. Combust. Flame. 131, 29–46 (2002)

475

https://doi.org/10.1016/S0010-2180(02)00390-5

476

[21]

Bartlmä, F., Schröder, K.: The Diffraction of a Plane Detonation Wave at a Convex Corner. Combust.

477

Flame. 66, 237–248 (1986).

478

https://doi.org/10.1016/0010-2180(86)90137-9

479

[22]

Jones, D.A., Kemister, G., Oran, E.S., Sichel, M.: The influence of cellular structure on detonation

480

transmission. Shock Waves. 6, 119–129 (1996)

481

https://doi.org/10.1007/BF02510992

482

[23]

483

484

485

Pintgen, F., Shepherd, J.E..: Detonation Diffraction in Gases. Combust. Flame. 156, 665–677 (2009)

https://doi.org/10.1016/j.combustflame.2008.09.008

[24]

Deiterding, R.: High-resolution numerical simulation and analysis of Mach reflection structures in

detonation waves in low-pressure H2–O2–Ar mixtures: a summary of results obtained with the adaptive

29

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

486

mesh refinement framework AMROC. J. Combust. 2011, Article ID 738969 (2011)

487

http://dx.doi.org/10.1155/2011/738969

488

[25]

Li, J., Ning, J., Kiyanda, C.B., Ng, H.D.: Numerical simulations of cellular detonation diffraction in a

489

stable gaseous mixture. Propul. Power Research. 5, 177–183 (2016)

490

https://doi.org/10.1016/j.jppr.2016.07.004

491

[26]

Mehrjoo, N., Zhang, B., Portaro, R., Ng, H.D., Lee, J.H.S.: Response of critical tube diameter phenomenon

492

to small perturbations for gaseous detonations. Shock Waves. 24, 219–229 (2014)

493

https://doi.org/10.1007/s00193-013-0491-2

494

[27]

Mehrjoo, N., Gao, Y., Kiyanda, C.B., Ng, H.D., Lee, J.H.S.: Effects of porous walled tubes on detonation

495

transmission into unconfined space. Proc. Combust. Insti. 35, 1981–1987 (2015)

496

https://doi.org/10.1016/j.proci.2014.06.031

497

[28]

Murray, S.B., Lee, J.H.S.: On the transformation of planar detonation to cylindrical detonation. Combust.

498

Flame. 52, 269–289 (1983)

499

https://doi.org/10.1016/0010-2180(83)90138-4

500

[29]

Nagura, Y., Kasahara, J., Sugiyama, Y., Matsuo, A.: Comprehensive visualization of detonation-diffraction

501

structure and sizes in unstable and stable mixtures. Proc. Combust. Inst. 34, 1949–1956 (2013)

502

https://doi.org/10.1016/j.proci.2012.07.078

30

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

503

[30]

Nagura, Y., Kasahara, J., Matsuo, A.: Multi-frame visualization for detonation wave diffraction. Shock

504

Waves. 26, 645–656 (2016)

505

https://doi.org/10.1007/s00193-016-0663-y

506

[31]

507

508

Gordon, S., McBride, B.J.: Computer Program for Calculation Complex Chemical Equilibrium

Compositions and Applications – I. Analysis. NASA Reference Publication 1311 (1994)

[32]

Gordon, S., McBride, B.J.: Computer Program for Calculation Complex Chemical Equilibrium

509

Compositions and Applications – II. User's Manual and Program Description. NASA Reference

510

Publication 1311 (1996)

511

[33]

Ng, H.D., Higgins, A.J., Kiyanda, C.B., Radulescu, M.I., Lee, J.H.S., Bates, K.R., Nikiforakis, N.:

512

Non-linear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theory.

513

Model. 9, 159–170 (2005)

514

https://doi.org/10.1080/13647830500098357

515

[34]

516

517

Browne, S., Ziegler, J., Shepherd, J.E.: Numerical Solution Methods for Shock and Detonation Jump

Conditions. GALCIT Report FM2006.006 (Revised) (2015)

[35]

Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T.,

518

Hanson,

519

http://combustion.berkeley.edu/gri-mech/version30/text30.html

R.K.,

Song,

S.,

Gardiner,

Jr.,

W.C.,

31

Lissianski,

V.V.,

Qin,

Z.:

GRI-Mech

3.0,

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

520

[36]

521

Strehlow, R.A.: Gas phase detonations: Recent developments. Combust. Flame. 2, 81–101 (1968)

https://doi.org/10.1016/0010-2180(68)90083-7

522

[37]

Kaneshige, M., Shepherd, J.E.: Detonation database. GALCIT Technical Report FM97-8 (1997)

523

[38]

Strehlow, R.A.: Transverse waves in detonations: II. structure and spacing in H2-O2, C2H2-O2, C2H4-O2 and

524

CH4-O2 systems. AIAA J. 7(3), 492–496 (1969)

525

https://doi.org/10.2514/3.5134

526

[39]

Abid, S., Dupre, G., Paillard, C.: Oxidation of gaseous unsymmetrical dimethylhydrazine at high

527

temperatures and detonation of UDMH/O2 mixtures. Dynamic Aspects of Detonations, Prog. Astronaut.

528

Aeronaut., AIAA, 153, 162–181 (1991)

529

https://doi.org/10.2514/5.9781600866265.0162.0181

530

[40]

Auffret, Y., Desbordes, D., Presles, H.N. : Detonation structure of C2H4-O2-Ar mixtures at elevated initial

531

temperature. Shock Waves. 9, 107–111 (1999)

532

https://doi.org/10.1007/s001930050145

533

[41]

534

535

536

Denisov, Y.N., Troshin, Y.K.: Structure of gaseous detonation in tubes. Sov. Phys. Tech. Phys. 5(4), 419–

431 (1960)

[42]

Manzhalei, V.I., Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front

in gas mixtures at elevated pressures. Combust. Explos. Shock Waves (USSR). 10(1), 89–95 (1974)

32

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

537

538

https://doi.org/10.1007/BF01463793

[43]

Edwards, D.H., Hooper, G., Morgan, J.M., Thomas, G.O.: The quasi-steady regime in critically initiated

539

detonation waves. J. Phys. D. 11(13), 2103–2117 (1978)

540

https://doi.org/10.1088/0022-3727/11/15/008

541

[44]

Vasil'ev, A.A., Grigor'ev, V.V.: Critical conditions for gas detonation in sharply expanding channels.

542

Combust. Explos. Shock Waves (USSR). 16(6), 579–585 (1980)

543

https://doi.org/10.1007/BF00794938

544

[45]

Desbordes, D., Vachon, M.: Critical diameter of diffraction for strong plane detonations. Dynamics of

545

Explosions, Prog. Astronaut. Aeronaut., AIAA, 106, 131–143 (1986)

546

https://doi.org/10.2514/5.9781600865800.0131.0143

547

[46]

Desbordes, D.: Transmission of overdriven plane detonations: Critical diameter as a function of cell

548

regularity and size. Dynamics of Explosions, Prog. Astronaut. Aeronaut., AIAA, 114, 170–185 (1988)

549

https://doi.org/10.2514/5.9781600865886.0170.0185

550

[47]

Laberge, S., Knystautas, R., Lee, J.H.S. : Propagation and extinction of detonation waves in tube bundles.

551

Dynamic Aspects of Detonations, Prog. Astronaut. Aeronaut., AIAA, 153, 381–396 (1993)

552

https://doi.org/10.2514/5.9781600866265.0381.0396

553

[48]

Schultz, E., Shepherd, J.E.: Detonation Diffraction Through a Mixture Gradient. GALCIT Report

33

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

554

555

FM2006.008 (2008)

[49]

556

557

Shepherd, J.E., Schultz, E., Akbar, R.: Detonation Diffraction. Proc. International Symposium on Shock

Waves. Imperial College, London, UK, July 18-23, 1999.

[50]

Gallier, S., Le Palud, F., Pintgen, F., Mével, R., Shepherd, J.E.: Detonation wave diffraction in H2–O2–Ar

558

mixtures. Proc. Combust. Inst. 36, 2781–2789 (2017)

559

https://doi.org/10.1016/j.proci.2016.06.090

560

561

34

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

562

563

564

565

566

567

568

569

Table 1

570

velocities and stability parameters were calculated using the NASA CEA code [31, 32] and

571

ZND code [34] with GRI-Mech 3.0 [35], respectively, at p0 = 50 kPa and T0 = 293 K.

Experimental conditions and typical mixture characteristics. CJ detonation

yAr

[%]

lc

[mm]

DCJ

[m/s]

Cell data

10, 20

2340

26

Eq. 2

[10, 38, 39]

E2

50

10

1940

9.7

Eq. 3

[38, 40]

E3

67

10

1800

6.3

Eq. 4

E4

75

10

1720

4.9

Eq. 5

[38]

10

2390

28

Eq. 6

[16, 41–48]

80

10

1690

5.9

Eq. 7

[16, 48]

Mixture

E1

A1

A2

C2H4 + 3O2 / Ar

2C2H2 + 5O2 / Ar

572

573

35

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

574

575

576

577

578

579

580

Fig. 1. Schematic of observation chamber.

581

582

36

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

583

584

585

586

587

588

Fig. 2. Typical sequences of single detonation diffraction processes for C2H4 + 3O2 (E1) and lc = 10 mm. (a)

589

Schlieren photographs for supercritical diffraction, p0 = 30 kPa, T0 = 20 °C, frame interval = 2 s. See also Movie

590

1a, available as supplementary material. (b) Schlieren photographs for subcritical diffraction, p0 = 10 kPa, T0 =

591

20 °C, frame interval = 2 s. See also Movie 1b, available as supplementary material. (c) Illustration of a reflection

592

event of a transverse detonation wave in supercritical diffraction, frame interval = 1 s.

593

594

37

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

595

596

597

598

599

600

601

Fig. 3. Reflection point distance vs. initial pressure for supercritical diffraction in ethylene mixtures (E1–E4).

602

603

38

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

604

605

606

607

608

609

610

Fig. 4. Reflection point distance vs. initial pressure for supercritical diffraction in acetylene mixtures (A1–A2).

611

612

39

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

613

614

615

616

617

618

619

Fig. 5. Reflection point distance vs. initial partial pressure of fuel for supercritical diffraction in ethylene mixtures

620

(E1–E4).

621

40

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

622

623

624

625

626

627

628

Fig. 6. Reflection point distance vs. initial partial pressure of fuel for supercritical diffraction in acetylene mixtures

629

(A1–A2).

630

41

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

631

632

633

634

635

636

637

Fig. 7. Product of reflection point distance and initial pressure vs. argon mole fraction for supercritical diffraction.

638

639

42

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

640

641

642

643

644

645

646

Fig. 8. Ratio of re-evaluated reflection point distance to channel width vs. argon mole fraction in ethylene mixtures

647

(E1–E4). The reflection point distances were re-evaluated by using the fitted curves shown in Fig. 5. For the

648

subcritical diffraction, data points were given by extrapolation.

649

650

43

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

651

652

653

654

655

656

657

Fig. 9. Ratio of re-evaluated reflection point distance to channel width vs. argon mole fraction in acetylene

658

mixtures (A1–A2). The reflection point distances were re-evaluated by using the fitted curves shown in Fig. 6. For

659

the subcritical diffraction, data points were given by extrapolation.

660

661

44

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

662

663

664

665

666

667

668

Fig. 10. Ratio of channel width to cell width vs. argon mole fraction in ethylene mixtures (E1–E4).

669

670

45

A. Kawasaki and J. Kasahara, A novel characteristic length of detonation relevant to supercritical diffraction,

SHOCK WAVES, Vol. 30, No. 1, 2020, pp. 1-12

671

672

673

674

675

676

677

Fig. 11. Ratio of channel width to cell width vs. argon mole fraction in acetylene mixtures (A1–A2).

678

679

46

...

参考文献をもっと見る