リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「低対称や変調構造を伴う含水鉱物高圧相への圧力誘起相転移機構」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

低対称や変調構造を伴う含水鉱物高圧相への圧力誘起相転移機構

岡本 啓太郎 東北大学

2022.05.25

概要

A crystal structure includes many kinds of characteristic lengths. These values would manifest themselves as pressure response, including the lower symmetry and the long-period modulation. In the hydrous mineral where hydrogen and heavy elements coexists, one can think two aspects of structure: one is the framework structure supported by coordination polyhedra, and the other is the network connected by the interaction between the hydrogen atoms and the surrounding anions. My studies were aimed to clarify the pressure response of these structural components and mutual interaction. In the case of HP-phase of lawsonites with space group Pmcn, the enforcement of the hydrogen-bond network reported at the low-temperature phase was not confirmed in the X-ray diffraction study. Instead, rigid motion or deformation of the tetrahedra were detected. These facts mean that the mechanism of the phase transition at around 2 GPa is mainly controlled by the displacement and the deformation of the framework. For hemimorphite, which undergoes the phase transition arising from the rotation of secondary building unit (SBU), satellite reflections were newly observed and samples from different location showed opposed behavior on the presence/absence of the satellites. The sample from China showed the structural modulation at the pressure-induced phase transition. The modulation was caused by the arrangement of anti-phase boundaries (APB) with q = [0, 1/8.4, 0], and the distribution of the APBs are preserved even at higher pressure. In contrast, for one of the samples from Mexico, the behaviors of the satellite reflections were completely different.

In both minerals, the pressure response of the natural mineral would depend on the combination of structural components and crystallinity of the sample. The direction of the displacement during the structural phase transition could be more than one, and the misfit of the direction between the structural components such as SBU results in the APB. The APB is destined to be resolved except in the case where the continuity of the crystal structure is imperfect.

この論文で使われている画像

参考文献

1-4. 参照文献

Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(5), 1195–1215.

Bondi, A. V. (1964). van der Waals volumes and radii. The Journal of physical chemistry, 68(3), 441–451.

Cametti, G., Armbruster, T., Hermann, J., & Churakov, S. (2017). Crystal structure and phase transition in noelbensonite: a multi-methodological study. Physics and chemistry of minerals, 44(7), 485-496.

Cooper, B. J., Gibbs, G. V., and Ross, F. K. (1981) The effects of heating and dehydration on the crystal structure of hemimorphite up to 600 ˚C, Zeitschrift für Kristallographie, 156, 305–321.

Hazen, R. M., Downs, R. T., & Prewitt, C. T. (2000). Principles of comparative crystal chemistry. Reviews in Mineralogy and Geochemistry, 41(1), 1-33.

Koch-Müller, M., Mrosko, M., Gottschalk, M., and Schade, U. (2012). Pressure-induced phase transitions in ilvaite studied by in situ micro-FTIR spectroscopy. European Journal of Mineralogy, 24(5), 831–838.

Kolesov, B. (2006). Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. American Mineralogist, 91(8-9), 1355–1362.

Kolesov, B. A., Lager, G. A., & Schultz, A. J. (2008). Behaviour of H2O and OH in lawsonite: a single-crystal neutron diffraction and Raman spectroscopic investigation. European Journal of Mineralogy, 20(1), 63-72.

McConnell, J. D. C. (2008). The origin and characteristics of the incommensurate structures in the plagioclase feldspars. The Canadian Mineralogist, 46(6), 1389–1400.

Pauling, L. (1960) The Nature of Chemical Bond, 3rd ed. Cornell Univ. Press, Ithaca, N. Y. Poli, S., and Schmidt, M. W. (2002). Petrology of subducted slabs. Annual Review of Earth and

Planetary Sciences, 30(1), 207–235.

Robinson, K., Gibbs, G. V., & Ribbe, P. H. (1971). Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172(3983), 567–570.

Salje, E. K. (1991). Crystallography and structural phase transitions, an introduction. Acta Crystallographica Section A: Foundations of Crystallography, 47(5), 453–469.

Sano-Furukawa, A., Yagi, T., Okada, T., Gotou, H., and Kikegawa, T. (2012). Compression behaviors of distorted rutile-type hydrous phases, MOOH (M= Ga, In, Cr) and Planetary Sciences, 30(1), 207–235.

Pommier, A., Williams, Q., Evans, R. L., Pal, I., and Zhang, Z. (2019). Electrical investigation of natural lawsonite and application to subduction contexts. Journal of Geophysical Research: Solid Earth, 124(2), 1430–1442.

Schmidt, M. W. (1995). Lawsonite: upper pressure stability and formation of higher density hydrous phases. American Mineralogist, 80(11–12), 1286–1292.

Schmidt, M. W., and Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4), 361–379.

Scott, H. P., and Williams, Q. (1999). An infrared spectroscopic study of lawsonite to 20 GPa. Physics and Chemistry of Minerals, 26(6), 437–445.

Scott, H. P., Liu, Z., Hemley, R. J., and Williams, Q. (2007). High-pressure infrared spectra of talc and lawsonite. American Mineralogist, 92(11-12), 1814–1820.

Sheldrick, G. M., and Schneider, T. R. (1997). [16] SHELXL: high-resolution refinement. Methods in enzymology, 277, 319–343. International Tables for Crystallography vol. C (2004)

Sondergeld, P., Schranz, W., Tröster, A., Carpenter, M. A., Libowitzky, E., and Kityk, A. V. (2000). Optical, elastic, and dielectric studies of the phase transitions in lawsonite. Physical Review B, 62(10), 6143.

Sondergeld, P., Schranz, W., Tröster, A., Kabelka, H., Meyer, H., Carpenter, M. A., Lodziana. Z., and Kityk, A. V. (2001). Dielectric relaxation and order-parameter dynamics in lawsonite. Physical Review B, 64(2), 024105.

Sondergeld, P., Schranz, W., Troster, A., Armbruster, T., Giester, G., Kityk, A., and Carpenter, M. A. (2005). Ordering and elasticity associated with low-temperature phase transitions in lawsonite. American Mineralogist, 90(2-3), 448–456.

2-4. 参照文献

Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(5), 1195–1215.

Baur, W. H. (1978). Crystal structure refinement of lawsonite. American Mineralogist, 63(3–4), 311–315.

Blessing, R. H. (1987). Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallography Reviews, 1(1), 3–58.

Boffa-Ballaran, T. B., and Angel, R. J. (2003). Equation of state and high-pressure phase transitions in lawsonite. European Journal of Mineralogy, 15(2), 241–246.

Cai, N., Inoue, T., and Kikegawa, T. (2015). Thermal equation of state of lawsonite up to 10 GPa and 973 K. Journal of Mineralogical and Petrological Sciences, 110(5), 235–240. Carpenter, M. A., Meyer, H. W., Sondergeld, P., Marion, S., and Knight, K. S. (2003).

Spontaneous strain variations through the low temperature phase transitions of deuterated lawsonite. American Mineralogist, 88(4), 534–546.

Chantel, J., Mookherjee, M., and Frost, D. J. (2012). The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones. Earth and Planetary Science Letters, 349, 116–125.

Chinnery, N., Pawley, A. R., and Clark, S. M. (2000). The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability. American Mineralogist, 85(7-8), 1001–1008.

Daniel, I., Fiquet, G., Gillet, P., Schmidt, M. W., and Hanfland, M. (1999). P–V–T equation of state of lawsonite. Physics and Chemistry of Minerals, 26(5), 406–414.

Daniel, I., Fiquet, G., Gillet, P., Schmidt, M. W., and Hanfland, M. (2000). High-pressure behaviour of lawsonite: a phase transition at 8.6 GPa. European Journal of Mineralogy, 12(4), 721–733.

Farrugia, L. J. (1999). WinGX suite for small-molecule single-crystal crystallography. journal of Applied Crystallography, 32(4), 837–838.

Grevel, K. D., Nowlan, E. U., Fasshauer, D. W., and Burchard, M. (2000). In situ X-ray diffraction investigation of lawsonite and zoisite at high pressures and temperatures. American Mineralogist, 85(1), 206–216.

Hamilton, W. C. (1965). Significance tests on the crystallographic R factor. Acta Crystallographica, 18(3), 502–510.

Hayward, S. A., Burriel, R., Marion, S., Meyer, H. W., and Carpenter, M. A. (2002). Kinetic effects associated with the low-temperature phase transitions in lawsonite. European Journal of Mineralogy, 14(6), 1145–1153.

Holland, T. J. B., Redfern, S. A., and Pawley, A. R. (1996). Volume behavior of hydrous minerals at high pressure and temperature; II, Compressibilities of lawsonite, zoisite, clinozoisite, and epidote. American Mineralogist, 81(3–4), 341–348.

International Tables for Crystallography Volume C: Mathematical, physical and chemical tables, 3rd Edition (2004) Prince, E. Ed., pp. 1032, Wiley.

Kolesov, B. A., Lager, G. A., and Schultz, A. J. (2008). Behaviour of H2O and OH in lawsonite: a single-crystal neutron diffraction and Raman spectroscopic investigation. European Journal of Mineralogy, 20(1), 63–72.

Kozlova, S. G. E., and Gabuda, S. P. (2013). Single-crystal 1H NMR data and hydrogen atom disorder in lawsonite, CaAl2[Si2O7](OH)2•H2O. Journal of Structural Chemistry, 54(1), 146–151.

Libowitzky, E., and Armbruster, T. (1995). Low-temperature phase transitions and role of hydrogen bonds in lawsonite. American Mineralogist, 80(11–12), 1277–1285.

Libowitzky, E., and Rossman, G. R. (1996). FTIR spectroscopy of lawsonite between 82 and 325 K. American Mineralogist, 81(9-10), 1080–1091.

Liebscher, A., Dörsam, G., Franz, G., Wunder, B., and Gottschalk, M. (2010). Crystal chemistry of synthetic lawsonite solid-solution series CaAl2[(OH)2/Si2O7]•H2O– SrAl2[(OH)2/Si2O7]•H2O and the Cmcm–P 21/m phase transition. American Mineralogist, 95(5-6), 724-735.

Manthilake, G., Mookherjee, M., Bolfan‐Casanova, N., and Andrault, D. (2015). Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures. Geophysical Research Letters, 42(18), 7398–7405.

Mao, H. K., Xu, J. A., and Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research: Solid Earth, 91(B5), 4673–4676.

Martín-Olalla, J. M., Hayward, S. A., Meyer, H. W., Ramos, S., Cerro, J. D., and Carpenter, M. A. (2001). Phase transitions in lawsonite: a calorimetric study. European Journal of Mineralogy, 13(1), 5–14.

Meyer, H. W., Carpenter, M. A., Graeme-Barber, A., Sondergeld, P., and Schranz, W. (2000). Local and macroscopic order parameter variations associated with low temperature phase transitions in lawsonite, CaAl2Si2O7(OH)2•H2O. European Journal of Mineralogy, 12(6), 1139–1150.

Meyer, H. W., Marion, S., Sondergeld, P., Carpenter, M. A., Knight, K. S., Redfern, S. A., and Dove, M. T. (2001). Displacive components of the low-temperature phase transitions in lawsonite. American Mineralogist, 86(4), 566–577.

Miyajima, H., Matsubara, S., Miyawaki, R., and Ito, K. (1999). Itoigawaite, a new mineral, the Sr analogue of lawsonite, in jadeitite from the Itoigawa-Ohmi district, central Japan. Mineralogical Magazine, 63(6), 909–916.

Momma, K., and Izumi, F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied crystallography, 41(3), 653–658.

O' Bannon III, E., Beavers, C. M., Kunz, M., and Williams, Q. (2017). The high-pressure phase of lawsonite: A single crystal study of a key mantle hydrous phase. Journal of Geophysical Research: Solid Earth, 122(8), 6294–6305.

Oishi, R., Yonemura, M., Nishimaki, Y., Torii, S., Hoshikawa, A., Ishigaki, T., Morishima, T., Mori, K., and Kamiyama, T. (2009). Rietveld analysis software for J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1), 94–96.

Oishi-Tomiyasu, R., Yonemura, M., Morishima, T., Hoshikawa, A., Torii, S., Ishigaki, T., and Kamiyama, T. (2012). Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. Journal of Applied Crystallography, 45(2), 299–308.

Okamoto, K., and Maruyama, S. (1999). The high-pressure synthesis of lawsonite in the MORB+ H2O system. American Mineralogist, 84(3), 362–373.

岡本 啓太郎 (2016). ローソン石中の水素位置の再検討 東北大学理学部地球惑星物質 科学科学士論文

岡本 啓太郎 (2018). ローソン石における高圧ならびに低温相転移機構の比較 東北大学大学院理学研究科地学専攻修士論文

Okazaki, K., and Hirth, G. (2016). Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature, 530(7588), 81–84.

Pawley, A. R., and Allan, D. R. (2001). A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, 65(1), 41–58.

Poli, S., and Schmidt, M. W. (2002). Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30(1), 207–235.

Pommier, A., Williams, Q., Evans, R. L., Pal, I., and Zhang, Z. (2019). Electrical investigation of natural lawsonite and application to subduction contexts. Journal of Geophysical Research: Solid Earth, 124(2), 1430–1442.

Schmidt, M. W. (1995). Lawsonite: upper pressure stability and formation of higher density hydrous phases. American Mineralogist, 80(11–12), 1286–1292.

Schmidt, M. W., and Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4), 361–379.

Scott, H. P., and Williams, Q. (1999). An infrared spectroscopic study of lawsonite to 20 GPa. Physics and Chemistry of Minerals, 26(6), 437–445.

Scott, H. P., Liu, Z., Hemley, R. J., and Williams, Q. (2007). High-pressure infrared spectra of talc and lawsonite. American Mineralogist, 92(11-12), 1814–1820.

Sheldrick, G. M., and Schneider, T. R. (1997). [16] SHELXL: high-resolution refinement. Methods in enzymology, 277, 319–343. International Tables for Crystallography vol. C (2004)

Sondergeld, P., Schranz, W., Tröster, A., Carpenter, M. A., Libowitzky, E., and Kityk, A. V. (2000). Optical, elastic, and dielectric studies of the phase transitions in lawsonite. Physical Review B, 62(10), 6143.

Sondergeld, P., Schranz, W., Tröster, A., Kabelka, H., Meyer, H., Carpenter, M. A., Lodziana. Z., and Kityk, A. V. (2001). Dielectric relaxation and order-parameter dynamics in lawsonite. Physical Review B, 64(2), 024105.

Sondergeld, P., Schranz, W., Troster, A., Armbruster, T., Giester, G., Kityk, A., and Carpenter,M. A. (2005). Ordering and elasticity associated with low-temperature phase transitions in lawsonite. American Mineralogist, 90(2-3), 448–456.

3-4. 参照文献

Barclay, G. A., and Cox, E. G. (1980) The structure of hemimorphite, Zeitschrift für Kristallographie, Bd., 113S, 23–29.

Baur, W. H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group, Acta Crystallographica Section B, 30, 1195.

Bissengaliyeva, M. R., Bekturganov, N. S., and Gogol, D. B. (2010). Thermodynamic characteristics of a natural zinc silicate hemimorphite. Journal of thermal analysis and calorimetry, 101(1), 49–58.

Blessing, R. H. (1987). Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallography Reviews, 1(1), 3–58.

Böhm, H. (1983) Modulated structures at phase transitions, American Mineralogist, 68, 11–17. Cooper, B. J., Gibbs, G. V., and Ross, F. K. (1981) The effects of heating and dehydration on the crystal structure of hemimorphite up to 600 ˚C, Zeitschrift für Kristallographie, 156, 305–321.

Dachs, E., and Geiger, C. A. (2009). Heat-capacity behaviour of hemimorphite, Zn4Si2O7(OH)2H2O, and its dehydrated analogue Zn4Si2O7(OH)2: a calorimetric and thermodynamic investigation of their phase transitions. European Journal of Mineralogy, 21(5), 971–983.

Faust, G. T. (1951). Thermal analysis and X-ray studies of sauconite and of some zinc minerals of the same paragenetic association. American Mineralogist: Journal of Earth and Planetary Materials, 36(11–12), 795–822.

Hamilton, W. C. (1965). Significance tests on the crystallographic R factor. Acta Crystallographica, 18(3), 502–510.

Hill, R. J., Gibbs, G. V., Craig, J. R., Ross, F. K., and Williams, J. M. (1977) A neutron- diffraction study of hemimorphite, Zeitschrift für Kristallographie, Bd., 146S, 241– 259.

Ito, T., and West, J. (1932) The structure of hemimorphite (H2Zn2SiO5), Zeitschrift für Kristallographie, 83, 1–8.

Kolesov, B. (2006). Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. American Mineralogist, 91(8–9), 135–-1362.

是川 正顕. (1964) X 線回折における衛星反射の理論 日本結晶学会誌, 6(1), 2–16.

Larsen, F. K., and Hansen, N. K. (1984). Diffraction study of the electron density distribution in beryllium metal. Acta Crystallographica Section B: Structural Science, 40(3), 169–179.

Libowitzky, E., and Rossman, G. R. (1997) IR spectroscopy of hemimorphite between 82 and 373 K and optical evidence for a low-temperature phase transition, European Journal of Mineralogy, 9, 793–802.

Libowitzky, E., Schultz, A. J., and Young, D. M. (1998) The low-temperature structure and phase transition of hemimorphite, Zn4Si2O7(OH)2•H2O, Zeitschrift für Kristallographie, 213, 659–668.

McDonald, W. S., and Cruickshank, D. W. J. (1967) Refinements of the structure of hemimorphite, Zeitschrift für Kristallographie, Bd., 124S, 180–191.

Medas, D., Podda, F., Meneghini. C., and De Giudici, G. (2017) Stability of biological and inorganic hemimorphite: Implications for hemimorphite precipitation in non-sulfide Zn deposits, Ore Geology Reviews, 89, 808–821.

Okamoto, K., Kuribayashi, T., and Nagase, T. (2021). Modulated structure of hemimorphite associated with pressure-induced phase transition. Journal of Mineralogical and Petrological Sciences, 116(5), 251–62.

Roy, D. M., and Mumpton, F. A. (1956). Stability of minerals in the system ZnO–SiO2–H2O. Economic Geology, 51(5), 432–443.

Seryotkin, Y. V., and Bakakin, V. V. (2011) Structural evolution of hemimorphite at high pressure up to 4.2 GPa, Physics and Chemistry of Minerals, 38, 679–684.

Takéuchi, Y., Sasaki, S., Joswig, W., and Fuess, H. (1978) X-ray and neutron diffraction study of hemimorphite, Proceedings of the Japan Academy, Series B, 54, 577–582.

Taylor, H. F. W. (1962). The dehydration of hemimorphite. American Mineralogist: Journal of Earth and Planetary Materials, 47(7-8), 932–944.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る