リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hyperintense signal on diffusion-weighted imaging for monitoring the acute response and local recurrence after photodynamic therapy in malignant gliomas」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hyperintense signal on diffusion-weighted imaging for monitoring the acute response and local recurrence after photodynamic therapy in malignant gliomas

Fujita, Yuichi Nagashima, Hiroaki Tanaka, Kazuhiro Hashiguchi, Mitsuru Itoh, Tomoo Sasayama, Takashi 神戸大学

2021.10.30

概要

Purpose Photodynamic therapy (PDT) subsequent to surgical tumor removal is a novel localized treatment for malignant glioma that provides effective local control. The acute response of malignant glioma to PDT can be detected as linear transient hyperintense signal on diffusion-weighted imaging (DWI) and a decline in apparent diffusion coefficient values without symptoms. However, their long-term clinical significance has not yet been examined. The aim of this study was to clarify the link between hyperintense signal on DWI as an acute response and recurrence after PDT in malignant glioma. Methods Thirty patients (16 men; median age, 60.5 years) underwent PDT for malignant glioma at our institution between 2017 and 2020. We analyzed the signal changes on DWI after PDT and the relationship between these findings and the recurrence pattern. Results All patients showed linear hyperintense signal on DWI at the surface of the resected cavity from day 1 after PDT. These changes disappeared in about 30 days without any neurological deterioration. During a mean post-PDT follow-up of 14.3 months, 19 patients (63%) exhibited recurrence: 10 local, 1 distant, and 8 disseminated. All of the local recurrences arose from areas that did not show hyperintense signal on DWI obtained on day 1 after PDT. Conclusions The local recurrence in malignant glioma after PDT occurs in an area without hyperintense signal on DWI as an acute response to PDT. This characteristic finding could aid in the monitoring of local recurrence after PDT.

この論文で使われている画像

参考文献

316

1.

317

318

Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold

for newly diagnosed glioblastomas. J Neurosurg 115:3-8. https://doi.org/10.3171/2011.2.JNS10998

2.

Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE (2014) Extent of resection of

319

glioblastoma revisited: Personalized survival modeling facilitates more accurate survival prediction and

320

supports a maximum-safe-resection approach to surgery. J Clin Oncol 32:774-782.

321

https://doi.org/10.1200/JCO.2013.51.8886

322

3.

Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE,

323

Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of

324

416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J Neurosurg

325

95:190-198. https://doi.org/10.3171/jns.2001.95.2.0190

326

4.

Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA

327

(2014) Residual tumor volume versus extent of resection: Predictors of survival after surgery for

328

glioblastoma. J Neurosurg 121:1115-1123. https://doi.org/10.3171/2014.7.JNS132449

329

5.

330

331

Burger PC, Heinz ER, Shibata T, Kleihues P (1988) Topographic anatomy and CT correlations in the

untreated glioblastoma multiforme. J Neurosurg 68:698-704. https://doi.org/10.3171/jns.1988.68.5.0698

6.

Brandes AA, Tosoni A, Franceschi E, Sotti G, Frezza G, Amistà P, Morandi L, Spagnolli F, Ermani M

332

(2009) Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly

333

diagnosed patients with glioblastoma: Correlation with MGMT promoter methylation status. J Clin

334

Oncol 27:1275-1279. https://doi.org/10.1200/JCO.2008.19.4969

335

7.

Dörner L, Mustafa A, Rohr A, Mehdorn HM, Nabavi A (2013) Growth pattern of tumor recurrence

336

following bis-chloroethylnitrosourea (BCNU) wafer implantation in malignant glioma. J Clin Neurosci

337

20:429-434. https://doi.org/10.1016/j.jocn.2012.01.060

338

8.

Rapp M, Baernreuther J, Turowski B, Steiger H-J, Sabel M, Kamp MA (2017) Recurrence pattern

339

analysis of primary glioblastoma. World Neurosurg 103:733-740.

340

https://doi.org/10.1016/j.wneu.2017.04.053

341

9.

Gaspar LE, Fisher BJ, Macdonald DR, LeBer DV, Halperin EC, Schold SC Jr, Cairncross JG (1992)

342

Supratentorial malignant glioma: Patterns of recurrence and implications for external beam local

343

treatment. Int J Radiat Oncol Biol Phys 24:55-57. https://doi.org/10.1016/0360-3016(92)91021-E

344

10.

Konishi Y, Muragaki Y, Iseki H, Mitsuhashi N, Okada Y (2012) Patterns of intracranial glioblastoma

345

recurrence after aggressive surgical resection and adjuvant management: retrospective analysis of 43

346

cases. Neurol Med Chir (Tokyo) 52:577-586. https://doi.org/10.2176/nmc.52.577

347

11.

Nitta M, Muragaki Y, Maruyama T, Iseki H, Komori T, Ikuta S, Saito T, Yasuda T, Hosono J, Okamoto

348

S, Koriyama S, Kawamata T (2018) Role of photodynamic therapy using talaporfin sodium and a

349

semiconductor laser in patients with newly diagnosed glioblastoma. J Neurosurg 131:1361-1368.

350

https://doi.org/10.3171/2018.7.JNS18422

351

352

12.

Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y,

Kaneko S, Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T (2013) Phase II clinical

13

353

study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in

354

patients with malignant brain tumors. J Neurosurg 119:845-852.

355

https://doi.org/10.3171/2013.7.JNS13415

356

13.

357

358

157. https://doi.org/10.2176/nmc.ra.2015-0296

14.

359

360

15.

Dolmans EJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380387. https://doi.org/10.1038/nrc1071

16.

363

364

Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol

55:145-157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x

361

362

Akimoto J (2016) Photodynamic therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56:151-

Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev

Cancer 6:535-545. https://doi.org/10.1038/nrc1894

17.

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA,

365

Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D,

366

Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of

367

Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials

368

Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J

369

Med 352:987-996. https://doi.org/10.1056/NEJMoa043330

370

18.

Azoulay M, Santos F, Shenouda G, Petrecca K, Oweida A, Guiot MC, Owen S, Panet-Raymond V,

371

Souhami L, Abdulkarim BS (2017) Benefit of re-operation and salvage therapies for recurrent

372

glioblastoma multiforme: results from a single institution. J Neurooncol 132:419-426.

373

https://doi.org/10.1007/s11060-017-2383-2

374

19.

Tully PA, Gogos AJ, Love C, Liew D, Drummond KJ, Morokoff AP (2016) Reoperation for recurrent

375

glioblastoma and its association with survival benefit. Neurosurgery 79:678-689.

376

https://doi.org/10.1227/NEU.0000000000001338

377

20.

Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, Herrlinger U, Ketter R, Schlegel U,

378

Marosi C, Reifenberger G, Wick W, Tonn JC, Wirsching H-G (2016) Complete resection of contrast-

379

enhancing tumor volume is associated with improved survival in recurrent glioblastoma - Results from

380

the DIRECTOR trial. Neuro Oncol 18:549-556. https://doi.org/10.1093/neuonc/nov326

381

21.

Montemurro N, Perrini P, Blanco MO, Vannozzi R (2016) Second surgery for recurrent glioblastoma: A

382

concise overview of the current literature. Clin Neurol Neurosurg 142:60-64.

383

https://doi.org/10.1016/j.clineuro.2016.01.010

384

22.

Wann A, Tully PA, Barnes EH, Lwin Z, Jeffree R, Drummond KJ, Gan H, Khasraw M (2018)

385

Outcomes after second surgery for recurrent glioblastoma: a retrospective case–control study. J

386

Neurooncol 137:409-415. https://doi.org/10.1007/s11060-017-2731-2

387

23.

Fujita Y, Sasayama T, Tanaka K, Kyotani K, Nagashima H, Kohta M, Kimura H, Fujita A, Kohmura E

388

(2019) DWI for monitoring the acute response of malignant gliomas to photodynamic therapy. Am J

389

Neuroradiol 40:2045-2051. https://doi.org/10.3174/ajnr.A6300

390

24.

Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics.

14

391

392

Bone Marrow Transplant. 48:452-458. https:// doi.org/10.1038/bmt.2012.244.

25.

Moan J, Berg K (1991) The photodegredation of porphyrins in cells can be used to estimate the lifetime

393

of singlet oxygen. Photochem Photobiol 53:549-553. https://doi.org/10.1111/j.1751-

394

1097.1991.tb03669.x

395

26.

396

397

Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma – A review Part I – A biological

basis. J Clin Neurosci 13:615-625. https://doi.org/10.1016/J.JOCN.2005.11.014

27.

Henderson BW, Waldow SM, Mang TS, Potter WR, Malone PB, Dougherty TJ (1985) Tumor

398

destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic

399

therapy. Cancer Res 45:572-576.

400

28.

Fingar VH, Wieman TJ, Haydon PS (1997) The effects of thrombocytopenia on vessel stasis and

401

macromolecular leakage after photodynamic therapy using photofrin. Photochem Photobiol 66:513-517.

402

https://doi.org/10.1111/j.1751-1097.1997.tb03182.x

403

29.

Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ (2000) Antiangiogenic treatment

404

enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 60:4066-

405

4069

406

30.

407

408

carcinoma. Photochem Photobiol 46:899-901. https://doi.org/10.1111/j.1751-1097.1987.tb04866.x

31.

409

410

de Vree WJ, Essers MC, de Bruijn HS, Star WM, Foster JF, Sluiter W (1996) Evidence for an important

role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res 56:2908-2911.

32.

411

412

Shumaker BP, Hetzel FW (1987) Clinical laser photodynamic therapy in the treatment of bladder

Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW (1997) Altered expression of

interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 57:3904-3909.

33.

Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF,

413

Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and

414

T2-weighted MRI and spectroscopy. Magn Reson Med 14:330-346.

415

https://doi.org/10.1002/mrm.1910140218

416

34.

Ellingson BM, Abrey LE, Nelson SJ, Kaufmann TJ, Garcia J, Chinot O, Saran F, Nishikawa R,

417

Henriksson R, Mason WP, Wick W, Butowski N, Ligon KL, Gerstner ER, Colman H, de Groot J,

418

Chang S, Mellinghoff I, Young RJ, Alexander BM, Colen R, Taylor JW, Arrillaga-Romany I, Mehta A,

419

Huang RY, Pope WB, Reardon D, Batchelor T, Prados M, Galanis E, Wen PY, Cloughesy TF (2018)

420

Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic

421

factor for overall survival in newly diagnosed glioblastoma. Neuro Oncol 20:1240-1250.

422

https://doi.org/10.1093/neuonc/noy053

423

35.

Huang Z, Hsu YC, Li LB, Wang LW, Song XD, Yow CMN, Lei X, Musani AI, Luo RC, Day BJ (2015)

424

Photodynamic therapy of cancer - Challenges of multidrug resistance. J Innov Opt Health Sci

425

8:1530002. https://doi.org/10.1142/S1793545815300025

426

36.

Gołab J, Nowis D, Skrzycki M, Czeczot H, Baranczyk-Kuzma A, Wilczynski GM, Makowski M, Mroz

427

P, Kozar K, Kaminski R, Jalili A, Kopec' M, Grzela T, Jakobisiak M (2003) Antitumor effects of

428

photodynamic therapy are potentiated by 2-methoxyestradiol: A superoxide dismutase inhibitor. J Biol

15

429

430

Chem 278:407-414. https://doi.org/10.1074/jbc.M209125200

37.

Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M (2015) Tumor cell survival

431

pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition

432

strategies. Cancer Metastasis Rev 34:643-690. https://doi.org/10.1007/s10555-015-9588-7

433

38.

Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR,

434

Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011)

435

Photodynamic therapy of cancer: An update. CA Cancer J Clin 61:250-281.

436

https://doi.org/10.3322/caac.20114

437

39.

Ghahe SS, Kosicki K, Wojewódzka M, Majchrzak BA, Fogtman A, Iwanicka-Nowicka R, Ciuba A,

438

Koblowska M, Kruszewski M, Tudek B, Speina E (2021) Increased DNA repair capacity augments

439

resistance of glioblastoma cells to photodynamic therapy. DNA Repair (Amst) 104:103136.

440

https://doi.org/10.1016/j.dnarep.2021.103136

441

40.

of malignant gliomas. Neurology 76:87-93. https://doi.org/10.1212/WNL.0b013e318204a3af

442

443

Thompson EM, Frenkel EP, Neuwelt EA (2011) The paradoxical effect of bevacizumab in the therapy

41.

van Dijken BRJ, van Laar PJ, Li C, Yan JL, Boonzaier NR, Price SJ, FCRS, van der Hoorn A (2019)

444

Ventricle contact is associated with lower survival and increased peritumoral perfusion in glioblastoma.

445

J Neurosurg 131:717-723. https://doi.org/10.3171/2018.5.JNS18340

446

42.

Mistry AM, Kelly PD, Gallant JN, Mummareddy N, Mobley BC, Thompson RC, Chambless LB (2019)

447

Comparative analysis of subventricular zone glioblastoma contact and ventricular entry during resection

448

in predicting dissemination, hydrocephalus, and survival. Neurosurgery 85:E924-E932.

449

https://doi.org/10.1093/neuros/nyz144

450

43.

Mistry AM, Kelly PD, Thompson RC, Chambless LB (2018) Cancer dissemination, hydrocephalus, and

451

survival after cerebral ventricular entry during high-grade glioma surgery: A meta-analysis.

452

Neurosurgery 83:1119-1127. https://doi.org/10.1093/neuros/nyy202

453

44.

Young JS, Gogos AJ, Pereira MP, Morshed RA, Li J, Barkovich MJ, Hervey-Jumper SL, Berger MS

454

(2021) Effects of ventricular entry on patient outcome during glioblastoma resection. J Neurosurg.

455

https://doi.org/10.3171/2020.7.jns201362

456

45.

Elliott JP, Keles GE, Waite M, Temkin N, Berger MS (1994) Ventricular entry during resection of

457

malignant gliomas: effect on intracranial cerebrospinal fluid tumor dissemination. J Neurosurg 80:834-

458

839. https://doi.org/10.3171/jns.1994.80.5.0834

16

459

Table 1 Patient characteristics

Characteristic

PDT (n = 30)

Age, years

Median (range)

60.5 (23–85)

Sex, n (%)

Male

16 (53)

Female

14 (47)

Preoperative Karnofsky Performance Status score

Median (range)

80 (30–100)

Tumor locations, n (%)

Frontal

14 (47)

Temporal

9 (30)

Parietal

4 (13)

Occipital

1 (3)

Insular

1 (3)

Basal ganglia

1 (3)

Laterality, n (%)

Right

20 (67)

Left

10 (33)

Preoperative tumor volume, cm3

Median (range)

32.9 (2.2–140.0)

PDT

Median (range)

14 (2–31)

Extent of resection, n (%)

Gross total

23 (77)

Subtotal

5 (17)

Partial

2 (7)

Histopathology, n (%)

Glioblastoma

26 (87)

Anaplastic astrocytoma

2 (7)

Anaplastic oligodendroglioma

2 (7)

Isocitrate dehydrogenase mutation status, n (%)

Wild-type

25 (83)

17

Mutant

5 (17)

MGMT promoter methylation status, n (%)

Methylated

15 (50)

Unmethylated

9 (30)

Unknown

6 (20)

MIB-1 index, %

Median (range)

460

20 (10–80)

PDT, photodynamic therapy; MGMT, O6-methylguanine-DNA methyltransferase

18

461

Table 2 Tumor characteristics based on recurrence pattern after PDT

Local

(n = 10)

Distant

(n = 1)

Dissemination

(n = 8)

None

(n = 11)

Frontal

3 (30)

1 (100)

4 (50)

6 (55)

Temporal

4 (40)

0 (0)

1 (13)

4 (36)

Parietal

2 (20)

0 (0)

1 (13)

1 (9)

Occipital

0 (0)

0 (0)

1 (13)

0 (0)

Insular

1 (10)

0 (0)

0 (0)

0 (0)

Basal ganglia

0 (0)

0 (0)

1 (13)

0 (0)

Right

6 (60)

1 (100)

5 (63)

8 (73)

Left

4 (40)

0 (0)

3 (38)

3 (27)

32.9 (10.9–108.7)

8.7

34.6 (2.2–102.9)

37.7 (3.6–140.0)

12 (2–31)

15 (8–22)

15 (5–31)

Gross total

9 (90)

1 (100)

5 (63)

8 (73)

Subtotal

1 (10)

0 (0)

3 (38)

1 (9)

Partial

0 (0)

0 (0)

0 (0)

2 (18)

10 (100)

1 (100)

7 (88)

8 (73)

Anaplastic astrocytoma

0 (0)

0 (0)

0 (0)

2 (18)

Anaplastic oligodendroglioma

0 (0)

0 (0)

1 (13)

1 (9)

10 (100)

1 (100)

6 (75)

8 (73)

0 (0)

0 (0)

2 (25)

3 (27)

Methylated

6 (60)

1 (100)

3 (38)

5 (45)

Unmethylated

3 (30)

0 (0)

2 (25)

4 (36)

Unknown

1 (10)

0 (0)

3 (38)

2 (18)

Characteristic

Tumor locations, n (%)

Laterality, n (%)

Preoperative tumor volume, cm3

Median (range)

PDT

Median (range)

Extent of resection, n (%)

Histopathology, n (%)

Glioblastoma

Isocitrate dehydrogenase mutation status, n (%)

Wild-type

Mutant

MGMT promoter methylation status, n (%)

MIB-1 index, %

19

Median (range)

462

25 (10–70)

30

PDT, photodynamic therapy; MGMT, O -methylguanine-DNA methyltransferase

20

40 (10–80)

20 (10–25)

463

Figure Legends

464

Fig. 1 Axial diffusion-weighted imaging (DWI), T2-weighted FLAIR, and contrast-enhanced T1-weighted

465

imaging (CE-T1WI) of a 49-year-old woman showing a contrast-enhancing tumor in the left frontal lobe (upper

466

row of a). Post-PDT magnetic resonance (MR) images obtained on day 1 show complete resection of the

467

contrast-enhancing lesion and hyperintense signal on DWI adjacent to the resection cavity wall (middle row of

468

a). Follow-up MR images show local recurrence in the resection cavity wall of the primary tumor 22.5 months

469

after surgery (lower row of a). DWI (left of b) and CE-T1WI (right of b) show the relationship between the

470

hyperintense signal as the acute response and the recurrence site after PDT. The circle with the dotted line

471

indicates the area without hyperintense signal on DWI as the acute response (left of b). The white arrow

472

indicates the local recurrence site (right of b). The recurrence site is the area that does not show a hyperintense

473

signal on DWI obtained on day 1 after PDT (b). The histopathological diagnosis was WHO grade IV

474

glioblastoma, IDH wild-type. PDT, photodynamic therapy

475

476

Fig. 2 Axial diffusion-weighted imaging (DWI), T2-weighted FLAIR, and contrast-enhanced T1-weighted

477

imaging (CE-T1WI) of a 67-year-old woman showing a contrast-enhancing tumor in the right temporal lobe

478

(upper row of a). Post-PDT magnetic resonance (MR) images obtained on day 1 show complete resection of the

479

contrast-enhancing lesion and hyperintense signal on DWI adjacent to the resection cavity wall (middle row of

480

a). Follow-up MR images show local recurrence in the resection cavity wall of the primary tumor 7.7 months

481

after surgery (lower row of a). DWI (left of b) and CE-T1WI (right of b) show the relationship of the

482

hyperintense signal as the acute response with the recurrence site after PDT. The circle with the dotted line

483

indicates the area without hyperintense signal on DWI as the acute response (left of b). The white arrow

484

indicates the local recurrence site (right of b). The recurrence site is the area that does not show a hyperintense

485

signal on DWI obtained on day 1 after PDT (b). The histopathological diagnosis was WHO grade IV

486

glioblastoma, IDH wild-type. PDT, photodynamic therapy

487

488

Fig. 3 Axial diffusion-weighted imaging (DWI), T2-weighted FLAIR, and contrast-enhanced T1-weighted

489

imaging (CE-T1WI) of a 40-year-old man showing a ring-enhancing tumor in the left frontal lobe (a–c). Post-

490

PDT magnetic resonance (MR) images obtained on day 1 show complete resection of the contrast-enhancing

491

lesion and hyperintense signal on DWI adjacent to the resection cavity wall (d–f). Follow-up MR images at 32.7

492

months after surgery show intact tumor tissue in the primary tumor bed (g–i) and distant recurrence in the left

21

493

frontal lobe (j–l). The histopathological diagnosis was WHO grade IV glioblastoma, IDH wild-type. PDT,

494

photodynamic therapy

495

496

Fig. 4 Axial diffusion-weighted imaging (DWI), T2-weighted FLAIR, and contrast-enhanced T1-weighted

497

imaging (CE-T1WI) of a 76-year-old man showing a ring-enhancing tumor in the left parietal lobe (a–c). Post-

498

PDT magnetic resonance (MR) images obtained on day 1 show complete resection of the contrast-enhancing

499

lesion and hyperintense signal on DWI adjacent to the resection cavity wall (d–f). Follow-up MR images at 1.4

500

months after surgery show intact tumor tissue in the primary tumor bed (g–i) and dissemination (j–l). The

501

histopathological diagnosis was WHO grade IV glioblastoma, IDH wild-type. PDT, photodynamic therapy

22

(Day 1)

Local recurrence

Post-PDT

Before surgery

DWI

FLAIR

CE-T1WI

Post-PDT (Day 1)

Recurrence

DWI

CE-T1WI

(Day 1)

Local recurrence

Post-PDT

Before surgery

DWI

FLAIR

CE-T1WI

Post-PDT (Day 1)

Recurrence

DWI

CE-T1WI

Primary tumor bed

Recurrence

Distant recurrence

(Day 1)

Post-PDT

Before surgery

DWI

FLAIR

CE-T1WI

Primary tumor bed

Recurrence

Dissemination

(Day 1)

Post-PDT

Before surgery

DWI

FLAIR

CE-T1WI

Journal of Neuro-Oncology

Supplementary Information for

Hyperintense signal on diffusion-weighted imaging for monitoring the acute response and local

recurrence after photodynamic therapy in malignant gliomas

Yuichi Fujita*, Hiroaki Nagashima, Kazuhiro Tanaka, Mitsuru Hashiguchi, Tomoo Itoh, Takashi Sasayama

Supplementary Fig. 1 Intraoperative microscopic images during PDT. The resection cavity was irradiated with

a semiconductor laser (a). The cross-hair indicates the focal point of the laser. The large blood vessel is

protected by aluminum foil to avoid direct irradiation (b). PDT, photodynamic therapy

Supplementary Fig 2 Preoperative axial DWI of a representative case showing a mass lesion in the right frontal

lobe (a). Postoperative DWI shows time-dependent changes after PDT (b–e). On day 1 after PDT, linear

hyperintense signals were detected at the surface of the resected cavity (b). The hyperintense signals on DWI

disappeared in about 30 days (c–e). DWI, diffusion-weighted imaging; PDT, photodynamic therapy

Journal of Neuro-Oncology

Supplementary Table 1 Characteristics of recurrent and non-recurrent patients

Recurrence

(n = 19)

Characteristic

Non-recurrence

(n = 11)

Age, years

Median (range)

62.0 (35–85)

48.0 (23–69)

Sex, n (%)

Male

9 (47)

7 (64)

Female

10 (53)

4 (36)

Preoperative Karnofsky Performance Status score

Median (range)

70 (30–100)

90 (50–100)

Tumor locations, n (%)

Frontal

8 (42)

6 (55)

Temporal

5 (26)

4 (36)

Parietal

3 (16)

1 (9)

Occipital

1 (5)

0 (0)

Insular

1 (5)

0 (0)

Basal ganglia

1 (5)

0 (0)

Laterality, n (%)

Right

12 (63)

8 (73)

Left

7 (33)

3 (27)

Preoperative tumor volume, cm3

Median (range)

31.5 (2.2–108.7)

37.7 (3.6–140.0)

PDT

Median (range)

12 (2–31)

15 (5–31)

Extent of resection, n (%)

Gross total

15 (79)

8 (73)

Subtotal

4 (21)

1 (9)

Partial

0 (0)

2 (18)

Histopathology, n (%)

Glioblastoma

18 (95)

8 (73)

Anaplastic astrocytoma

0 (0)

2 (18)

Anaplastic oligodendroglioma

1 (5)

1 (9)

Isocitrate dehydrogenase mutation status, n (%)

Wild-type

17 (89)

8 (73)

Mutant

2 (11)

3 (27)

MGMT promoter methylation status, n (%)

Methylated

10 (53)

5 (45)

Unmethylated

5 (26)

4 (36)

Unknown

4 (21)

2 (18)

MIB-1 index, %

Median (range)

30 (10–80)

20 (10–25)

PDT, photodynamic therapy; MGMT, O6-methylguanine-DNA methyltransferase

P Value

0.12

0.47

0.09

1.00

0.70

0.80

0.62

0.24

0.13

0.33

0.68

0.01

Journal of Neuro-Oncology

Supplementary Table 2 Characteristics of patients based on recurrence patterns

Local

(n = 10)

Characteristic

Distant

(n = 1)

Dissemination

(n = 8)

P value

Age, years

Median (range)

61.0 (43–73)

40

68.0 (35–85)

Sex, n (%)

Male

3 (30)

1 (100)

5 (63)

Female

7 (70)

0 (0)

3 (38)

Preoperative Karnofsky Performance Status score

Median (range)

70 (50–100)

90

70 (30–100)

Tumor locations, n (%)

Frontal

3 (30)

1 (100)

4 (50)

Temporal

4 (40)

0 (0)

1 (13)

Parietal

2 (20)

0 (0)

1 (13)

Occipital

0 (0)

0 (0)

1 (13)

Insular

1 (10)

0 (0)

0 (0)

Basal ganglia

0 (0)

0 (0)

1 (13)

Laterality, n (%)

Right

6 (60)

1 (100)

5 (63)

Left

4 (40)

0 (0)

3 (38)

Preoperative tumor volume, cm3

Median (range)

32.9 (10.9–108.7)

8.7

34.6 (2.2–102.9)

PDT

Median (range)

12 (2–31)

15 (8–22)

Extent of resection, n (%)

Gross total

9 (90)

1 (100)

5 (63)

Subtotal

1 (10)

0 (0)

3 (38)

Partial

0 (0)

0 (0)

0 (0)

Histopathology, n (%)

Glioblastoma

10 (100)

1 (100)

7 (88)

Anaplastic astrocytoma

0 (0)

0 (0)

0 (0)

Anaplastic oligodendroglioma

0 (0)

0 (0)

1 (13)

Isocitrate dehydrogenase mutation status, n (%)

Wild-type

10 (100)

1 (100)

6 (75)

Mutant

0 (0)

0 (0)

2 (25)

MGMT promoter methylation status, n (%)

Methylated

6 (60)

1 (100)

3 (38)

Unmethylated

3 (30)

0 (0)

2 (25)

Unknown

1 (10)

0 (0)

3 (38)

MIB-1 index, %

Median (range)

25 (10–70)

30

40 (10–80)

PDT, photodynamic therapy; MGMT, O6-methylguanine-DNA methyltransferase; NaN, not a number

---------------------------------------------∗Corresponding

author. Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1

Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Email: fyuichi@med.kobe-u.ac.jp

0.22

0.24

0.59

0.74

0.34

0.54

0.34

0.50

0.23

0.76

0.65

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る