リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Visualized procollagen Ia1 demonstrates the intracellular processing of propeptides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Visualized procollagen Ia1 demonstrates the intracellular processing of propeptides

田中 利明 守矢 恒司 柳川 享世 田川 陽一 花方 信孝 生駒 俊之 東京工業大学 DOI:https://doi.org/10.26508/lsa.202101060

2022.02.18

概要

The processing of type I procollagen is essential for fibril for- mation; however, the steps involved remain controversial. We constructed a live cell imaging system by inserting fluorescent proteins into type I pre-procollagen α1. Based on live imaging and immunostaining, the C-propeptide is intracellularly cleaved at the perinuclear region, including the endoplasmic reticulum, and subsequently accumulates at the upside of the cell. The N-propeptide is also intracellularly cleaved, but is transported with the repeating structure domain of collagen into the extracellular region. This system makes it possible to detect relative increases and decreases in collagen secretion in a high-throughput manner by assaying fluorescence in the culture medium, and revealed that the rate-limiting step for collagen secretion occurs after the synthesis of procollagen. In the present study, we identified a defect in procollagen processing in activated hepatic stellate cells, which secrete aberrant collagen fibrils. The results obtained demonstrated the intracellular processing of type I procollagen, and revealed a link between dysfunctional processing and dis- eases such as hepatic fibrosis.

参考文献

Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3: a007526. doi:10.1101/cshperspect.a007526

Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, et al (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439: 604–607. doi:10.1038/nature04377

Bateman JF, Lamande SR, Dahl HH, Chan D, Mascara T, Cole WG (1989) A frameshift mutation results in a truncated nonfunctional carboxyl- terminal pro alpha 1(I) propeptide of type I collagen in osteogenesis imperfecta. J Biol Chem 264: 10960–10964. doi:10.1016/s0021-9258(18) 60412-0

Bonadio J, Holbrook KA, Gelinas RE, Jacob J, Byers PH (1985) Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J Biol Chem 260: 1734–1742. doi:10.1016/s0021-9258(18) 89655-7

Brodsky B, Ramshaw JA (1997) The collagen triple-helix structure. Matrix Biol 15: 545–554. doi:10.1016/s0945-053x(97)90030-5

Bruns RR, Hulmes DJ, Therrien SF, Gross J (1979) Procollagen segment-long- spacing crystallites: Their role in collagen fibrillogenesis. Proc Natl Acad Sci U S A 76: 313–317. doi:10.1073/pnas.76.1.313

Burgeson RE, Morris NP, Murray LW, Duncan KG, Keene DR, Sakai LY (1985) The structure of type VII collagen. Ann N Y Acad Sci 460: 47–57. doi:10.1111/ j.1749-6632.1985.tb51156.x

Byers PH, Duvic M, Atkinson M, Robinow M, Smith LT, Krane SM, Greally MT, Ludman M, Matalon R, Pauker S, et al (1997) Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 72: 94–105. doi:10.1002/(sici)1096- 8628(19971003)72:1<94::aid-ajmg20>3.0.co;2-o

Byers PH (1993) Osteogenesis imperfecta. In Connective tissues and its heritable disorders, Royce PM, Steinmann B (eds), pp 317–350. New York: Wiley-Liss.

Byers PH (2001a) Folding defects in fibrillar collagens. Philos Trans R Soc Lond B Biol Sci 356: 151–158. doi:10.1098/rstb.2000.0760

Byers PH (2001b) Disorders of collagen biosynthesis and structure. In The metabolic and molecular bases of inherited disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds), Vol. IV, 8th edn, pp 5241–5285. New York: McGraw-Hill.

Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118: 1341–1353. doi:10.1242/jcs.01731

Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165: 553–563. doi:10.1083/jcb.200312071

Canty-Laird EG, Lu Y, Kadler KE (2012) Stepwise proteolytic activation of type I procollagen to collagen within the secretory pathway of tendon fibroblasts in situ. Biochem J 441: 707–717. doi:10.1042/BJ20111379

Chessler SD, Wallis GA, Byers PH (1993) Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J Biol Chem 268: 18218–18225. doi:10.1016/s0021-9258(17) 46833-5

Chung HJ, Steplewski A, Uitto J, Fertala A (2009) Fluorescent protein markers to tag collagenous proteins: The paradigm of procollagen VII. Biochem Biophys Res Commun 390: 662–666. doi:10.1016/j.bbrc.2009.10.024

Copito RP (1997) ER quality control: The cytoplasmic connection. Cell 88: 427–430. doi:10.1016/s0092-8674(00)81881-4

Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53: 717–748. doi:10.1146/annurev.bi.53.070184.003441

Goldberg B (1974) Electron microscopic studies of procollagen from cultured human fibroblasts. Cell 1: 185–192. doi:10.1016/0092-8674(74)90110-x

Hall DA (ed) (1964) In International Review of Connective Tissue Research, Vol. 2, pp 244. New York: Academic Press.

Hawkins JR, Superti-Furga A, Steinmann B, Dalgleish R (1991) A 9-base pair deletion in COL1A1 in a lethal variant of osteogenesis imperfecta. J Biol Chem 266: 22370–22374. doi:10.1016/s0021-9258(18)54581-6

Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5: 309–313. doi:10.1038/6529

Hulmes DJ, Bruns RR, Gross J (1983) On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci U S A 80: 388–392. doi:10.1073/pnas.80.2.388

Hulmes DJ, Kadler KE, Mould AP, Hojima Y, Holmes DF, Cummings C, Chapman JA, Prockop DJ (1989) Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide. J Mol Biol 210: 337–345. doi:10.1016/0022-2836(89)90335-5

Humphries SM, Lu Y, Canty EG, Kadler KE (2008) Active negative control of collagen fibrillogenesis in vivo. Intracellular cleavage of the type I procollagen propeptides in tendon fibroblasts without intracellular fibrils. J Biol Chem 283: 12129–12135. doi:10.1074/jbc.M708198200

Inagaki Y, Truter S, Greenwel P, Rojkind M, Unoura M, Kobayashi K, Ramirez F (1995) Regulation of the alpha 2(I) collagen gene transcription in fat- storing cells derived from a cirrhotic liver. Hepatology 22: 573–579. doi:10.1002/hep.1840220230

Jimenez SA, Varga J, Olsen A, Li L, Diaz A, Herhal J, Koch J (1994) Functional analysis of human alpha 1(I) procollagen gene promoter. Differential activity in collagen-producing and -nonproducing cells and response to transforming growth factor beta 1. J Biol Chem 269: 12684–12691. doi:10.1016/s0021-9258(18)99930-8

Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120: 1955–1958. doi:10.1242/jcs.03453

Kadler KE, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self- assembly is a classical example of an entropy-driven process. J Biol Chem 262: 15696–15701. doi:10.1016/s0021-9258(18)47783-6

Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316: 1–11. doi:10.1042/bj3160001

Kawaguchi k, Endo A, Fukushima T, Madoka Y, Tanaka T, Komada M (2018) Ubiquitin-specific protease 8 deubiquitinates Sec31A and decreases large COPII carriers and collagen IV secretion. Biochem Biophys Res Commun 499: 635–641. doi:10.1016/j.bbrc.2018.03.202

Kerwar SS, Cardinale GJ, Kohn LD, Spears CL, Stassen FL (1973) Cell-free synthesis of procollagen: L-929 fibroblasts as a cellular model for dermatosparaxis. Proc Natl Acad Sci U S A 70: 1378–1382. doi:10.1073/ pnas.70.5.1378

Kikuchi K, Ihn H, Sato S, Igarashi A, Soma Y, Ishibashi Y, Takehara K (1994) Serum concentration of procollagen type I carboxyterminal propeptide in systemic sclerosis. Arch Dermatol Res 286: 77–80. doi:10.1007/BF00370731

Kuivaniemi H, Tromp G, Prockop DJ (1991) Mutations in collagen genes: Causes of rare and some common diseases in humans. FASEB J 5: 2052–2060. doi:10.1096/fasebj.5.7.2010058

Kuivaniemi H, Tromp G, Prockop DJ (1997) Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network- forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum Mutat 9: 300–315. doi:10.1002/(SICI) 1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9

Lamande´ SR, Bateman JF (1999) Procollagen folding and assembly: The role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol 10: 455–464. doi:10.1006/scdb.1999.0317

Layman DL, Ross R (1973) The production and secretion of procollagen peptidase by human fibroblasts in culture. Arch Biochem Biophys 157: 451–456. doi:10.1016/0003-9861(73)90661-9

Lees JF, Bulleid NJ (1994) The role of cysteine residues in the folding and association of the COOH-terminal propeptide of types I and III procollagen. J Biol Chem 269: 24354–24360. doi:10.1016/s0021-9258(19) 51090-0

Lehninger AL (1975) Biochemistry, 2nd edn, pp p135. New York: Worth Publishers, Inc.

Li X, Bian Y, Takizawa Y, Hashimoto T, Ikoma T, Tanaka J, Kitamura N, Inagaki Y, Komada M, Tanaka T (2013) ERK-dependent downregulation of Skp2 reduces Myc activity with HGF, leading to inhibition of cell proliferation through a decrease in Id1 expression. Mol Cancer Res 11: 1437–1447. doi:10.1158/1541-7786.MCR-12-0718

Lightfoot SJ, Holmes DF, Brass A, Grant ME, Byers PH, Kadler KE (1992) Type I procollagens containing substitutions of aspartate, arginine, and cysteine for glycine in the pro alpha 1 (I) chain are cleaved slowly by N-proteinase, but only the cysteine substitution introduces a kink in the molecule. J Biol Chem 267: 25521–25528. doi:10.1016/S0021-9258(19) 74071-X

Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, et al (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32: 598–609. doi:10.1002/ humu.21475

Lu Y, Kamel-El Sayed SA, Wang K, Tiede-Lewis LM, Grillo MA, Veno PA, Dusevich V, Phillips CL, Bonewald LF, Dallas SL (2018) Live imaging of type I collagen assembly dynamics in osteoblasts stably expressing GFP and mCherry-tagged collagen constructs. J Bone Miner Res 33: 1166–1182. doi:10.1002/jbmr.3409

Lund AM, Schwartz M, Skovby F (1996) Variable clinical expression in a family with OI type IV due to deletion of three base pairs in COL1A1. Clin Genet 50: 304–309. doi:10.1111/j.1399-0004.1996.tb02379.x

Maeda M, Katada T, Saito K (2017) TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 216: 1731–1743. doi:10.1083/jcb.201703084

Malfait F, Symoens S, Goemans N, Gyftodimou Y, Holmberg E, López-Gonza´lez V, Mortier G, Nampoothiri S, Petersen MB, De Paepe A (2013) Helical mutations in type I collagen that affect the processing of the amino- propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis 8: 78. doi:10.1186/ 1750-1172-8-78

Malhotra V, Erlmann P (2015) The pathway of collagen secretion. Annu Rev Cell Dev Biol 31: 109–124. doi:10.1146/annurev-cellbio-100913-013002

Miller EA, Schekman R (2013) COPII: A flexible vesicle formation system. Curr Opin Cell Biol 25: 420–427. doi:10.1016/j.ceb.2013.04.005

Morris JL, Cross SJ, Lu Y, Kadler KE, Lu Y, Dallas SL, Martin P (2018) Live imaging of collagen deposition during skin development and repair in a collagen I - GFP fusion transgenic zebrafish line. Dev Biol 441: 4–11. doi:10.1016/j.ydbio.2018.06.001

Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR (1981) Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A 78: 2879–2882. doi:10.1073/pnas.78.5.2879

Nagata K (2003) HSP47 as a collagen-specific molecular chaperone: Function and expression in normal mouse development. Semin Cell Dev Biol 14: 275–282. doi:10.1016/j.semcdb.2003.09.020

Oliver JE, Thompson EM, Pope FM, Nicholls AC (1996) Mutation in the carboxy- terminal propeptide of the pro alpha 1(I) chain of type I collagen in a child with severe osteogenesis imperfecta (OI type III): Possible implications for protein folding. Hum Mutat 7: 318–326. doi:10.1002/ (SICI)1098-1004(1996)7:4<318::AID-HUMU5>3.0.CO;2-4

Omari S, Makareeva E, Roberts-Pilgrim A, Mirigian L, Jarnik M, Ott C, Lippincott-Schwartz J, Leikin S (2018) Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proc Natl Acad Sci U S A 115: E10099–E10108. doi:10.1073/pnas.1814552115

Pace JM, Atkinson M, Willing MC, Wallis G, Byers PH (2001) Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum Mutat 18: 319–326. doi:10.1002/humu.1193

Parry DA, Barnes GR, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci 203: 305–321. doi:10.1098/ rspb.1978.0107

Persikov AV, Pillitteri RJ, Amin P, Schwarze U, Byers PH, Brodsky B (2004) Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. Hum Mutat 24: 330–337. doi:10.1002/humu.20091

Pickard A, Lu Y, Chang J, Garva R, Hodson N, Kadler KE (2018) Collagen assembly and turnover imaged with a CRISPR-Cas9 engineered Dendra2 tag. BioRxiv. doi:10.1101/331496. (Preprint posted June 5, 2018).

Pihlajaniemi T, Dickson LA, Pope FM, Korhonen VR, Nicholls A, Prockop DJ, Myers JC (1984) Osteogenesis imperfecta: Cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation. J Biol Chem 259: 12941–12944. doi:10.1016/s0021-9258(18)90635-6

Prockop DJ, Fertala A (1998) Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides. Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem 273:15598–15604. doi:10.1074/jbc.273.25.15598

Prockop DJ, Kivirikko KI (1995) Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64: 403–434. doi:10.1146/ annurev.bi.64.070195.002155

Roboti P, Witkos TM, Lowe M (2013) Biochemical analysis of secretory trafficking in mammalian cells. Methods Cell Biol 118: 85–103. doi:10.1016/B978-0-12-417164-0.00006-9

Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, Polischuk R, Schekman R, Malhotra V (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136: 891–902. doi:10.1016/j.cell.2008.12.025

Stephens DJ, Pepperkok R (2002) Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J Cell Sci 115: 1149–1160. doi:10.1242/jcs.115.6.1149

Ushio K, Hashimoto T, Kitamura N, Tanaka T (2009) Id1 is down-regulated by hepatocyte growth factor via ERK-dependent and ERK-independent signaling pathways, leading to increased expression of p16INK4a in hepatoma cells. Mol Cancer Res 7: 1179–1188. doi:10.1158/1541- 7786.MCR-08-0289

Vogel BE, Doelz R, Kadler KE, Hojima Y, Engel J, Prockop DJ (1988) A substitution of cysteine for glycine 748 of the alpha 1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away. J Biol Chem 263: 19249–19255. doi:10.1016/s0021-9258(18)37416-7

Willing MC, Cohn DH, Byers PH (1990) Frameshift mutation near the 39 end of the COL1A1 gene of type I collagen predicts an elongated pro alpha 1(I) chain and results in osteogenesis imperfecta type I. J Clin Invest 85: 282–290. doi:10.1172/JCI114424

Wong MY, Doan ND, DiChiara AS, Papa LJ 3rd, Cheah JH, Soule CK, Watson N, Hulleman JD, Shoulders MD (2018) A high-throughput assay for collagen secretion suggests an unanticipated role for Hsp90 in collagen production. Biochemistry 57: 2814–2827. doi:10.1021/ acs.biochem.8b00378

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る