リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Operation of Quantum Plasmonic Metasurfaces Using Electron Transport through Subnanometer Gaps」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Operation of Quantum Plasmonic Metasurfaces Using Electron Transport through Subnanometer Gaps

矢花, 一浩 Takeuchi, Takashi Noda, Masashi Yabana, Kazuhiro 筑波大学 DOI:10.1021/acsphotonics.9b00889

2020.10.23

概要

Herein, we investigate the optical properties of quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps according to the time-dependent density functional theory, a fully quantum mechanical approach. When the quantum and classical descriptions are compared, the transmission, reflection, and absorption rates of the metasurface exhibit substantial differences at shorter gap distances. The differences are caused by electron transport through the gaps of the nano-objects. The electron transport has profound influences for gap distances of ≲0.2 nm; that is, approximately equal to half of the distance found in conventional gap plasmonics in isolated systems, such as metallic nanodimers. Furthermore, it is shown that the electron transport makes the plasmon features of the metasurface washed out and produces broad spectral structures in the optical responses. In particular, the reflection response exhibits rapid attenuation as the gap distance decreases, while the absorption response extends over a wide spectral range.

参考文献

(1) Meinzer, N.; Barnes, W. L.; Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat.

Photonics 2014, 8, 889.

15

(2) Choudhury, S. M.; Wang, D.; Chaudhuri, K.; DeVault, C.; Kildishev, A. V.; Boltasseva, A.;

Shalaev, V. M. Material platforms for optical metasurfaces. Nanophotonics 2018, 7, 959.

(3) Aieta, F.; Genevet, P.; Kats, M. A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso F.

Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on

Plasmonic Metasurfaces. Nano Lett. 2012, 12, 4392.

(4) Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses

at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.

Science 2016, 352, 6290.

(5) Chen, W. T.; Yang, K. Y.; Wang, C. M.; Huang, Y. W.; Sun, G.; Chiang, I. D.; Liao, C. Y.;

Hsu, W. L.; Lin, H. T.; Sun, S.; Zhou, L.; Liu, A. Q.; Tsai, D. P. High-Efficiency Broadband

Meta-Hologram with Polarization-Controlled Dual Images. Nano Lett. 2014, 14, 225.

(6) Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface

holograms reaching 80% efficiency. Nat. Nanotech. 2015, 10, 308.

(7) Huang, Y. W.; Chen, W. T.; Tsai, W. Y.; Wu, P. C.; Wang, C. M.; Sun, G.; Tsai, D. P.

Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 2015, 15, 3122.

(8) Li, X.; Chen, L.; Li, Y.; Zhang, X.; Pu, M.; Zhao, Z.; Ma, X.; Wang, Y.; Hong, M.; Luo, X.

Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2016, 2,

e1601102.

(9) Yu, N.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F. A Broadband,

Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12,

6328.

(10) Ding, F.; Wang, Z.; He, S.; Shalaev, V. M.; Kildishev, A. V. Broadband High-Efficiency HalfWave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano 2015, 9, 4111.

16

(11) Ishii, S.; Kildishev, A. V.; Shalaev, V. M.; Chen, K. P.; Drachev, V. P. Metal nanoslit lenses

with polarization-selective design. Opt. Lett. 2011, 36, 451.

(12) Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I. I.; Briggs, D. P.; Valentine, J. Dielectric

Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex

Generation. Nano Lett. 2014, 14, 1394.

(13) Li, Z.; Palacios, E.; Butun, S.; Aydin, K. Visible-Frequency Metasurfaces for Broadband

Anomalous Reflection and High-Efficiency Spectrum Splitting. Nano Lett. 2015, 15, 1615.

(14) Ni, X.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for

visible light. Science 2015, 349, 1310.

(15) Fontana, J.; Maldonado, M.; Charipar, N.; Trammell, S. A.; Nita, R.; Naciri, J.; Pique, A.;

Ratna, B.; Gomes, A. S. L. Linear and nonlinear optical characterization of self-assembled,

large-area gold nanosphere metasurfaces with sub-nanometer gaps. Opt. Express. 2016, 24,

27360.

(16) Doyle, D.; Charipar, N.; Argyropoulos, C.; Trammell, S. A.; Nita, R.; Naciri, J.; Piqué, A.;

Herzog, J. B.; Fontana, J. Tunable Subnanometer Gap Plasmonic Metasurfaces. ACS Photo.

2018, 5, 1012.

(17) Zuloaga, J.; Prodan, E.; Nordlander, P. Quantum Description of the Plasmon Resonances of a

Nanoparticle Dimer. Nano Lett. 2009, 9, 887.

(18) Marinica, D. C.; Kazansky, A. K.; Nordlander, P.; Aizpurua, J.; Borisov, A. G. Quantum

Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer.

Nano Lett. 2012, 12, 1333.

(19) Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Bridging quantum and classical

plasmonics with a quantum-corrected model. Nat. Commun. 2012, 3, 825.

17

(20) Scholl, J. A.; García-Etxarri, A.; Koh, A. L.; Dionne, J. A. Observation of Quantum Tunneling

between Two Plasmonic Nanoparticles. Nano Lett. 2012, 12, 1333.

(21) Barbry, M.; Koval, P.; Marchesin, F.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; SánchezPortal, D. Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in

Nanooptics. Nano Lett. 2015, 15, 3410.

(22) Varas, A.; García-González, P.; Feist, J.; García-Vidal, F. J.; Rubio, A. Quantum plasmonics:

from jellium models to ab initio calculations. Nanophotonics 2016, 5, 409.

(23) Aguirregabiria, G.; Marinica, D. C.; Esteban, R.; Kazansky, A. K.; Aizpurua, J.; Borisov, A.

G. Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Phys. Rev. B

2018, 97, 115430.

(24) Mao, L.; Li, Z.; Wu, B.; Xu, H. Effects of quantum tunneling in metal nanogap on surfaceenhanced Raman scattering. Appl. Phys. Lett 2009, 94, 243102.

(25) Savage, K. J.; Hawkeye, M. M.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Baumberg, J. J.

Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574.

(26) Scholl, J. A.; Garcia-Etxarri, A.; Aguirregabiria, G.; Esteban, R.; Narayan, T. C.; Koh, A. L.;

Aizpurua, J.; Dionne, J. A. Evolution of Plasmonic Metamolecule Modes in the Quantum

Tunneling Regime. ACS Nano 2016, 10, 1346.

(27) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single

Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997,

78, 1167.

(28) Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by SurfaceEnhanced Raman Scattering. Science 1997, 275, 1102.

18

(29) Xu, H.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of Single Hemoglobin Molecules

by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, 4357.

(30) Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly

uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable

nanoparticles with 1-nm interior gap. Nat. Nanotech. 2011, 6, 452.

(31) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing

with plasmonic nanosensors. Nat. Mat. 2008, 7, 442.

(32) Boltasseva, A.; Atwater, H. A. Low-Loss Plasmonic Metamaterials. Science 2011, 331, 290.

(33) Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light

Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction.

Science 2011, 334, 333.

(34) Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics.

Nat. Mat. 2012, 11, 174.

(35) Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev.

Lett. 1984, 52, 997.

(36) Ullrich, C. A. Time-Dependent Density-Functional Theory Concepts and Applications;

Oxford University Press, 2012.

(37) Yamada, S.; Noda, M.; Nobusada, K.; Yabana, K. Time-dependent density functional theory

for interaction of ultrashort light pulse with thin materials. Phys. Rev. B 2018, 98, 245147.

(38) Brack, M. The physics of simple metal clusters: self-consistent jellium model and

semiclassical approaches. Rev. Mod. Phys. 1993, 65, 677.

(39) Yabana, K.; Bertsch, G. F. Time-dependent local-density approximation in real time. Phys.

Rev. B 1996, 54, 4484.

19

(40) Bertsch, G. F.; Iwata, J. I.; Rubio, A.; Yabana, K. Real-space, real-time method for the

dielectric function. Phys. Rev. B 2000, 62, 7998.

(41) Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for

many-electron systems. Phys. Rev. B 1981, 23, 5048.

(42) Noda, M.; Sato, S. A.; Hirokawa, Y.; Uemoto, M.; Takeuchi, T.; Yamada, S.; Yamada, A.;

Shinohara, Y.; Yamaguchi, M.; Iida, K.; Floss, I.; Otobe, T.; Lee, K. M.; Ishimura, K.; Boku,

T.; Bertsch, G. F.; Nobusada, K.; Yabana, K. SALMON: Scalable Ab-initio Light–Matter

simulator for Optics and Nanoscience. Comput. Phys. Commun. 2019, 235, 356.

(43) Jiang, Z. H.; Yun, S.; Toor, F.; Werner, D. H.; Mayer, T. S. Conformal Dual-Band NearPerfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano 2011, 5, 4641.

(44) Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent

resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2,

517.

(45) Argyropoulos, C.; Le, K. Q.; Mattiucci, N.; D’Aguanno, G.; Alù, A. Broadband absorbers and

selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B 2013, 87, 205112.

(46) Ding, F.; Dai, J.; Chen, Y.; Zhu, J.; Jin, Y.; Bozhevolnyi, S. I. Broadband near-infrared

metamaterial absorbers utilizing highly lossy metals. Sci. Rep. 2016, 6, 39445.

20

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る