リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds

Kinouchi, Hayate Sugimoto, Kazuma Yamaoka, Yousuke Takikawa, Hiroshi Takasu, Kiyosei 京都大学 DOI:10.1021/acs.joc.1c01108

2021.09.17

概要

Treatment of aryl-fused bicyclo[4.2.0]octanols with an oxidant such as phenyliodine diacetate (PIDA) or hypochlorous acid gave dihydrofuran-containing polycyclic aromatic compounds by selective β-cleavage of the cyclobutanol moiety. Mechanistic studies suggest that the oxygen atom of the hydrofuran ring is incorporated from the hydroxy group of the substrate via intramolecular addition. The oxidative transformation should serve as a new method to prepare functionalized polycyclic aromatic compounds.

この論文で使われている画像

参考文献

(1) (a) Berresheim, A. J.; Müllen, K. Polyphenylene Nanostructures. Chem. Rev. 1999, 99, 1747−1786. (b)

Watson, M. D.; Fechtenkötter, A.; Müllen, K. Big Is Beautiful−“Aromaticity” Revisited from the

Viewpoint of Macromolecular and Supramolecular Benzene Chemistry. Chem. Rev. 2001, 101, 1267−1300.

(c) Bendikov, M.; Wudl, F.; Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their

Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics. Chem. Rev. 2004, 104,

4891−4945. (d) Anthony, J. E. The larger Acenes: Versatile Organic Semiconductors. Angew. Chem., Int.

Ed. 2008, 47, 452−483. (e) Figueira-Duarte, T. M.; Müllen, K. Pyrene-Based Materials for Organic

Electronics. Chem. Rev. 2011, 111, 7260−7314. (f) Sun, Z.; Ye, Q.; Chi, C.; Wu, J. Low Band Gap Polycyclic

Hydrocarbons: From Closed-Shell Near Infrared Dyes and Semiconductors to Open-Shell Radicals. Chem.

Soc. Rev. 2012, 41, 7857−7889. (g) Jiang, W.; Li, Y.; Wang, Z.-H. Heteroarenes as High Performance

Organic Semiconductors. Chem. Soc. Rev. 2013, 42, 6113−6127.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(2) (a) Pashin, Y. V.; Bakhitova, L. M. Mutagenic and Carcinogenic Properties of Polycyclic Aromatic

Hydrocarbons. Environ. Health Perspect. 1979, 185−189. (b) da Silva Junior, F. C.; Felipe, M. B. M. C.;

de Castro, D. E. F.; da Silva Araújo, S. C.; Sisenando, H. C. N.; de Medeiros, S. R. B. A. Look beyond the

Priority: A systematic Review of the Genotoxic, Mutagenic, and Carcinogenic Endpoints of Non-priority

PAHs. Environ. Pollut. 2021, 278, 116838.

(3) Mohan, S. B.; Kumar, V. R.; Venkata, B.; Krishna, B. B.; Preetismita, B. Polyaromatic Hydrocarbons

(PAHs): Structures, Synthesis and Biological Profile. Curr. Org. Synth. 2020, 17, 625−640.

(4) (a) Niko, Y.; Hiroshige, Y.; Kawauchi, S.; Konishi, G.-i. Additional Insights into Luminescence Process

of Polycyclic Aromatic Hydrocarbons with Carbonyl Groups: Photophysical Properties of Secondary NAlkyl and Tertiary N,N-Dialkyl Carboxamides of Naphthalene, Anthracene, and Pyrene. J. Org. Chem.

2012, 77, 3986−3996. (b) Achten, C.; Andersson, J. T. Overview of Polycyclic Aromatic Compounds (PAC).

Polycyclic Aromat. Compd. 2015, 35, 177−186. (c) Kroonblawd, M. P.; Lindsey, R. K.; Goldman, N.

Synthesis of Functionalized Nitrogen-containing Polycyclic Aromatic Hydrocarbons and Other Prebiotic

Compounds Impacting Glycine Solutions. Chem. Sci. 2019, 10, 6091−6098. (d) Yang, X.; Hoffmann, M.;

Rominger, F.; Kirchbaum, T.; Dreuw, A.; Mastalerz, M. Functionalized Contorted Polycyclic Aromatic

Hydrocarbons by a One-step Cyclopentannulation and Regioselective Triflyoxylation. Angew. Chem., Int.

Ed. 2019, 58, 10650−10654.

(5) Nagamoto, Y.; Yamaoka, Y.; Fujimura, S.; Takemoto, Y.; Takasu, K. Synthesis of Functionalized

Polycyclic Aromatic Compounds via a Formal [2 + 2]-Cycloaddition. Org. Lett. 2014, 16, 1008−1011.

(6) (a) Nagamoto, Y.; Hattori, A.; Kakeya, H.; Takemoto, Y.; Takasu, K. pH-Sensitive DNA Cleaving

Agents: In situ Activation by Ring Contraction of Benzo-fused Cyclobutanols. Chem. Commun. 2013, 49,

2622−2624. (b) Yamaoka, Y.; Taniguchi, M.; Yamada, K.; Takasu, K. Asymmetric Total Synthesis of

Tylophorine via a Formal [2+2] Cycloaddition Followed by Migrative Ring Opening of a Cyclobutane.

Synthesis 2015, 47, 2819−2825. (c) Yamaoka, Y.; Taniguchi, M.; Yamada, K.; Takasu, K. Total Synthesis

of Phenanthroquinolizidine Alkaloid Cryptopleurine and Phenanthroindolizidine Alkaloid Tylophorine.

Heterocycles 2018, 97, 292−305. (d) Ogawa, N.; Yamaoka, Y.; Takikawa, H.; Takasu, K. Synthesis of

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Polycyclic Spirocarbocyles via Acid-Promoted Ring-Contraction/Dearomative Ring-Closure Cascade of

Oxapropellanes. Org. Lett. 2019, 21, 7563−7567.

(7) Ogawa, N.; Yamaoka, Y.; Takikawa, H.; Tsubaki, K.; Takasu, K. Synthesis and Properties of

Tribenzocarbazoles via an Acid-Promoted Retro (2+2)-Cycloaddition of Azapropellanes. J. Org. Chem.

2018, 83, 7994−8002.

(8) Selected examples for the synthesis PAHs from cyclobutanols: (a) Yu, J.; Yan, H.; Zhu, C. Synthesis

of Multiply Substituted Polycyclic Aromatic Hydrocarbons by Iridium-Catalyzed Annulation of RingFused Benzocyclobutenol with Alkyne through C−C Bond Cleavage. Angew. Chem. Int. Ed. 2016, 55,

1143−1146. (b) Mao, Y.; Zhu, C. C–C Bond (Hetero)arylation of Ring-Fused Benzocyclobutenols and

Application in the Assembly of Polycyclic Aromatic Hydrocarbons. J. Org. Chem. 2017, 82, 9133−9143.

(9) Selected reviews: (a) Marek, I.; Masarwa, A.; Delaye, P.-O.; Liebeling, M. Selective Carbon-Carbon

Bond Cleavage for Stereoselective Synthesis of Acyclic Systems. Angew. Chem., Int. Ed. 2015, 54,

414−429. (b) Ren, R.; Zhu, C. Radical-Mediated Ring-Opening Functionalization of Cyclobutanols: A

Shortcut to g-Substituted Ketones. Synlett 2016, 1139−1144. (c) Murakami, M.; Ishida, N. b-Scission of

Alkoxy Radicals in Synthetic Transformations. Chem. Lett. 2017, 46, 1692−1700. (d) Wu, X.; Zhu, C.

Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage. Chem.

Rec. 2018, 18, 587−598. (e) Wu, X.; Zhu, C. Recent Advances in Alkoxy Radical-Promoted C-C and CH bond Functionalization Starting from Free Alcohols. Chem. Commun. 2019, 55, 9747−9756.

(10) Selected examples. (a) Kobayashi, K.; Itoh, M.; Suginome, H. A New Synthesis of Phthalides through

-Scission of Benzocyclobutenol Hypoiodites. Tetrahedron Lett. 1987, 28, 3369−3372. (b) Suginome, H.;

Takeda, T.; Itoh, M.; Nakayama, Y.; Kobayashi, K. Photoinduced Molecular Transformations. Part 152.

Ring Expansion Based on a Sensitized [2 + 2] Photoaddition of Enol Ethers of Cyclic Ketones with Olefins,

Followed by a -Scission of Alkoxy Radicals Generated from the Resulting Cyclobutanols. Two-Carbon

Ring Expansion of -Indanone, -Tetralone and -Suberone. J. Chem. Soc., Perkin Trans. 1 1995, 49−61.

(c) Uemura, S.; Ohe, K.; Nishimura, T. Oxidative Transformation of tert-Cyclobutanols by Palladium

Catalysis under Oxygen Atmosphere. J. Org. Chem. 2001, 66, 1455−1465. (d) Takasu, K.; Nagao, S.; Ihara,

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

M. Synthesis of Medium-sized -Haloketones by Radical Mediated Ring-opening Reaction of Lewis Acid

Catalyzed (2+2)-Cycloadducts. Tetrahedron Lett. 2005, 46, 1005−1008. (e) Fujioka, H.; Komatsu, H.;

Miyoshi, A.; Murai, K.; Kita, Y. Phenyliodine Diacetate-Mediated Oxidative Cleavage of Cyclobutanols

Leading to -Hydroxy Ketones. Tetrahedron Lett. 2011, 52, 973−975. (f) Ren, R.; Zhao, H.; Huan, L.; Zhu,

C. Manganese-Catalyzed Oxidative Azidation of Cyclobutanols: Regiospecific Synthesis of Alkyl Azides

by C-C Bond Cleavage. Angew. Chem., Int. Ed. 2015, 54, 12692−12696. (g) Kurouchi, H.; Andujar-De

Sanctis I. L.; Singleton D. A. Controlling Selectivity by Controlling Energy Partitioning in a Thermal

Reaction in Solution. J. Am. Chem. Soc. 2016, 138, 14534-14537. (h) Huan, L.; Zhu, C. ManganeseCatalyzed Ring-Opening Chlorination of Cyclobutanols: Regiospecific Synthesis of -Chloroketones. Org.

Chem. Front. 2016, 3, 1467−1471. (i) Lopez, M. M.; Jamey, N.; Pinet, A.; Figadere, B.; Ferrié, L. Oxidative

Ring Expansion of Cyclobutanols: Access to Functionalized 1,2-Dioxanes, Org. Lett. 2021, 23, 1626−1631.

(11) Kirihara, M.; Okada, T.; Sugiyama, Y.; Akiyoshi, M.; Matsunaga, T.; Kimura, Y. Sodium Hypochlorite

Pentahydrate Crystals (NaOCl∙5H2O): A Convenient and Environmentally Benign Oxidant for Organic

Synthesis. Org. Proc. Res. Dev. 2017, 21, 1925−1937.

(12) (a) Yin, Q.; Wang, S.-G.; Liang, X.-W.; Gao, D.-W.; Zheng, J.; You, S.-Li. Organocatalytic Asymmetric

Dearomatization of Naphthols. Chem. Sci. 2015, 6, 4179−4183. (b) Wang, P.; Wang, J.; Wang, L.; Li, D.;

Wang, K.; Liu, Y.; Zhu, H.; Liu, X.; Yang, D.; Wang.; L. Asymmetric Dearomative Halogenation of bNaphthols: The Axial Chirality Transfer Reaction. Adv. Synth. Catal. 2018, 360, 401−405. (c) Uyanik, M.;

Sahara, N.; Ishihara, K. Regioselective Oxidative Chlorination of Arenols Using NaCl and Oxone. Eur. J.

Org. Chem. 2019, 27−31.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る