リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photo-on-Demand In Situ Synthesis of N-Substituted Trichloroacetamides with Tetrachloroethylene and Their Conversions to Ureas, Carbamates, and Polyurethanes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photo-on-Demand In Situ Synthesis of N-Substituted Trichloroacetamides with Tetrachloroethylene and Their Conversions to Ureas, Carbamates, and Polyurethanes

Akamatsu, Toshiki Shele, Muge Matsune, Ayako Kashiki, Yoshiyuki Liang, Fengying Okazoe, Takashi Tsuda, Akihiko 神戸大学

2023.01.17

概要

N-substituted trichloroacetamides (NTCAs), which serve as blocked isocyanates, were synthesized in ∼97% yields by in situ photo-on-demand trichloroacetylation of amines with tetrachloroethylene (TCE). The reactions were performed by photo-irradiation of TCE solutions containing an amine under O2 bubbling over 70 °C with a low-pressure mercury lamp. TCE underwent photochemical oxidation to afford trichloroacetyl chloride having high toxicity and corrosivity, which then reacts in situ with the amine to afford NTCA. Compared with conventional NTCA synthesis with hexachloroacetone, the present reaction has the advantage of being widely applicable to a variety of amines, even those with low nucleophilicity such as amides, fluorinated amines, and amine HCl salts. NTCAs could be converted to the corresponding N-substituted ureas and carbamates through base-catalyzed condensation with amines and alcohols, respectively, with the elimination of CHCl3. The reaction may proceed by the initial formation of isocyanate and its subsequent addition reaction with the amine or alcohol. This photochemical reaction also enables the synthesis of fluorinated NTCAs, which accelerate the reactions, and realizes the synthesis of novel fluorinated chemicals including polyurethanes.

この論文で使われている画像

参考文献

(1) Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Dreher, E.- L.; Langer, E.; Rassaerts, H.; Kleinschmidt, P.; Strack, H.; Cook, R.; Beck, U.; Lipper, K.-A.; Torkelson, T. R.; Löser, E.; Beutel, K. K.; Mann, T.Chlorinated Hydrocarbons, Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2006.

(2) (a) Dickinson, R. G.; Leermakers, J. A. The Chlorine-sensitized Photo-Oxidation of Tetrachloroethylene in Carbon Tetrachloride Solution. J. Am. Chem. Soc. 1932, 54, 3852−3862. (b) Dickinson, R. G.; Carrico, J. L. The Photochlorination and the Chlorine-Sensitized Photo-oxidation of Gaseous Tetrachloroethylene. J. Am. Chem. Soc. 1934, 56, 1473−1480.

(3) Frankel, D. M.; Johnson, C. E.; Pitt, H. M. Preparation and Properties of Tetrachloroethylene Oxide. J. Org. Chem. 1957, 22, 1119−1120.

(4) (a) Dilling, W. L.; Bredeweg, C. J.; Tefertiller, N. B. Organic Photochemistry. XIII. Simulated Atmospheric Photodecomposition Rates of Methylene Chloride, 1,1,1-Trichloroethane, Trichloro- ethylene, Tetrachloroethylene, and Other Compounds. Environ. Sci. Technol. 1976, 10, 351−356. (b) Yasuhara, A. Thermal Decom- position of Tetrachloroethylene. Chemosphere 1993, 26, 1507−1512.

(5) (a) Kutsuda, S.; Ibusuki, T.; Takeuchi, K. Heterogeneous Photoreaction of Tetrachloroethene−Air Mixture on Halloysite Particles. Environ. Sci. Technol. 2000, 34, 2484−2489. (b) Amama, P. B.; Itoh, K.; Murabayashi, M. Photocatalytic Degradation of Trichloroethylene in Dry and Humid Atmospheres: Role of Gas- Phase Reactions. J. Mol. Catal. A: Chem. 2004, 217, 109−115.

(6) Braun, M.; Rudolph, W.; Eichholz, K.Difluorochloracetyl, Dichloracetyl and Trichloracetyl Chloride Preparation. WO 9700847 A1, 1996

(7) (a) Babad, H.; Zeiler, A. G. The Chemistry of Phosgene. Chem. Rev. 1973, 73, 75−91. (b) Cotarca, L.; Eckert, H.Phosgenations-A Handbook; Wiley-VCH: Weinheim, 2003.

(8) (a) Tsuda, A.Use of mixture obtained by irradiating halogenated hydrocarbon with light. JP 2013181028 A, 2013; JP 5900920 B2, 2016. (b) Zhang, A.; Kuwahara, Y.; Hotta, Y.; Tsuda, A. Organic Syntheses with Photochemically Generated Chemicals from Tetra- chloroethylene. Asian J. Org. Chem. 2013, 2, 572−578.

(9) Kuwahara, Y.; Zhang, A. L.; Soma, H.; Tsuda, A. Photochemical Molecular Storage of Cl2, HCl, and COCl2: Synthesis of Organo- chlorine Compounds, Salts, Ureas, and Polycarbonate with Photo- decomposed Chloroform. Org. Lett. 2012, 14, 3376−3379.

(10) (a) Tsuda, A.Preparation of Halogenated Carboxylate Esters by Irradiating Light to Halocarbons and Alcohols in the Presence of Oxygen. WO 2015156245 A1, 2015; JP Patent 6057449.2016.(b) Liang, F.; Yanai, M.; Suzuki, Y.; Tsuda, A. Photo-on-Demand Synthesis of Chloroformates with a Chloroform Solution Containing an Alcohol and Its One-Pot Conversion to Carbonates and Carbamates. Org. Lett. 2020, 22, 3566−3569.

(11) (a) Tsuda, A.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K.Method for Preparing Vilsmeier Reagent. WO 2020050368 A1, 2020. (b) Liang, F.; Eda, K.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K.; Tsuda, A. Photo-on-Demand Synthesis of Vilsmeier Reagents with Chloroform and Their Applications to One-Pot Organic Syntheses. J. Org. Chem. 2021, 86, 6504−6517.

(12) (a) Tsuda, A.Carbonate Derivative Monomer Production Method for Making Secondary Battery Electrolyte or Polycarbonate. WO 2018211952 A1, 2018; US Patent 11130728, 2021; SG Patent 11201909670Y, 2021; JP Patent 7041925, 2022; CN Patent ZL201880032021.8, 2022; RU Patent 2771748, 2022. (b) Tsuda, A.Fluorinated Carbonate Derivative Production Method. WO 2018211953 A1, 2018; US Patent 11167259, 2021; JP Patent 7054096, 2022. (c) Hashimoto, Y.; Hosokawa, S.; Liang, F.; Suzuki, Y.; Dai, N.; Tana, G.; Eda, K.; Kakiuchi, T.; Okazoe, T.; Harada, H.; Tsuda, A. Photo-on-Demand Base-Catalyzed Phosgenation Reactions with Chloroform: Synthesis of Arylcarbonate and Halocarbonate Esters. J. Org. Chem. 2021, 86, 9811−9819.

(13) (a) Tsuda, A.; Okazoe, T.Method for Producing Isocyanate Compounds. WO 2020100971 A1, 2020. (b) Muranaka, R.; Liu, Y.; Okada, I.; Okazoe, T.; Tsuda, A. Photo-on-Demand Phosgenation Reactions with Chloroform for Selective Syntheses of N-Substituted Ureas and Isocyanates. ACS Omega 2022, 7, 5584−5594.

(14) (a) Tsuda, A.; Okazoe, T.; Okamoto, H.Method for Producing Carbonyl Halide from Halogenated Hydrocarbon. WO 2021045105 A1, 2021. (b) Suzuki, Y.; Liang, F.; Okazoe, T.; Okamoto, H.; Takeuchi, Y.; Tsuda, A. Photo-on-Demand Phosgenation Reactions with Chloroform Triggered by Cl2 upon Irradiation with Visible Light: Syntheses of Chloroformates, Carbonate Esters, and Iso- cyanates. Chem. Lett. 2022, 51, 549−551.

(15) (a) Pitts, C. R.; Lectka, T. Chemical Synthesis of β-Lactams: Asymmetric Catalysis and Other Recent Advances. Chem. Rev. 2014, 114, 7930−7953. (b) Fisher, J. F.; Mobashery, S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem. Rev. 2021, 121, 3412−3463.

(16) Braverman, S.; Cherkinsky, M.; Kedrova, L.; Reiselman, A. A Novel Synthesis of Isocyanates and Ureas via β-Elimination of Haloform. Tetrahedron Lett. 1999, 40, 3235−3238.

(17) Nishikawa, T.; Urabe, D.; Tomita, M.; Tsujimoto, T.; Iwabuchi, T.; Isobe, M. One-Pot Transformation of Trichloroacetamide into Readily Deprotectable Carbamates. Org. Lett. 2006, 8, 3263−3265.

(18) Atanassova, I. A.; Petrov, J. S.; Mollov, N. M. The Application of N-Substituted Trichloroacetamides as in situ Isocyanate Generat- ing Reagents for the Synthesis of Acylureas and Sulfonylureas. Synthesis 1987, 1987, 734−736.

(19) (a) Saunders, J. H.; Slocombe, R. J. The Chemistry of the Organic Isocyanates. Chem. Rev. 1948, 43, 203−218. (b) Arnold, R. G.; Nelson, J. A.; Verbanc, J. J. Recent Advances in Isocyanate Chemistry. Chem. Rev. 1957, 57, 47−76. (c) Ozaki, S. Recent Advances in Isocyanate Chemistry. Chem. Rev. 1972, 72, 457−496.

(20) (a) Shriner, R. L.; Horne, W. H.; Cox, R. F. B. p-Nitrophenyl Isocyanate. Org. Synth. Collect. Vol. 1934, 14, 72. (b) Farlow, M. W. Hexamethylene Diicocyanate. Org. Synth. Collect. Vol. 1951, 31, 62.

(21) (a) Hardy, D. V. N. Preparation of Aryl Carbimides. J. Chem. Soc. 1934, 2011. (b) Gill, J. E.; MacGillivray, R.; Munro, J. Preparation of Symmetrical Aromatic Triamines and Triisocyanates. J. Chem. Soc. 1949, 1753−1754. (c) Slocombe, R. J.; Hardy, E. E.; Saunders, J. H.; Jenkins, R. L. Phosgene Derivatives. The Preparation of Isocyanates, Carbamyl Chlorides and Cyanuric Acid. J. Am. Chem. Soc. 1950, 72, 1888−1891.

(22) Okamoto, H.; Okazoe, T.Process for Production of Isocyanate Compound, Urethane Compound, and Blocked Isocyanate Com- pound. WO 2011049023 A1, 2011.

(23) (a) Russell, B. R.; Edwards, L. O.; Raymonda, J. W. Vacuum Ultraviolet Absorption Spectra of the Chloromethanes. J. Am. Chem. Soc. 1973, 95, 2129. (b) Ogita, T.; Hatta, H.; Kagiya, T. Photoinduced Decomposition of Trihalomethanes in Aqueous Solution by UV Irradiation. Nippon Kagaku Kaishi 1983, 11, 1664− 1669.

(24) (a) Ratti, M.; Canonica, S.; McNeill, K.; Bolotin, J.; Hofstetter, T. B. Isotope Fractionation Associated with the Indirect Photolysis of Substituted Anilines in Aqueous Solution. Environ. Sci. Technol. 2015, 49, 12766−12773. (b) Corrochano, P.; Nachtigallová, D.; Klán, P. Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions. Environ. Sci. Technol. 2017, 51, 13763− 13770.

(25) Stachak, P.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials 2021, 14, 3497.

(26) (a) Takakura, T.; Yamabe, M.; Kato, M. Synthesis of Fluorinated Dicarboxylic Acids and Their Derivatives. Nippon Kagaku Kaishi 1985, 11, 2208−2210. (b) Takakura, T.; Yamabe, M.; Kato, M. Synthesis of Fluorinated Difunctional Monomers. J. Fluorine Chem. 1988, 41, 173−183.

(27) Joullié, M. M.; Day, A. R. Effect of Structure on Reactivity. IX. A Study of the Aminolysis of Esters of Trichloro- and Trifluoroacetic Acids. J. Am. Chem. Soc. 1954, 76, 2990−2993.

(28) Shang, J.; Pourvali, A.; Cochrane, J. R.; Hutton, C. A. Steric and Electronic Effects in the Synthesis and Regioselective Hydrolysis of Unsymmetrical Imides. Aust. J. Chem. 2015, 68, 1854−1858.

(29) Bew, C.; de Joshi, V. O.; Gray, J.; Kaye, P. T.; Meakins, G. D. Formation of N-Substituted Trichloroacetamides from Amines and Hexachloroacetone. J. Chem. Soc., Perkin Trans. 1 1982, 945−948.

(30) Surrey, A. R.; Mayer, J. R. The Preparation and Biological Activity of Some N,N’-Bis(haloacyl)polymethylenediamines. J. Med. Pharm. Chem. 1961, 3, 419−425.

(31) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. A General Method for the Synthesis of Unsymmetrically Substituted Ureas via Palladium-Catalyzed Amidation. Org. Lett. 2009, 11, 947− 950.

(32) Lebel, H.; Leogane, O. Curtius Rearrangement of Aromatic Carboxylic Acids to Access Protected Anilines and Aromatic Ureas. Org. Lett. 2006, 8, 5717−5720.

(33) Zhang, X.; Jing, H.; Zhang, G. Selenium-Catalyzed Oxidative Carbonylation of Aniline and Alcohols to N-Phenylcarbamates. Synth. Commun. 2010, 40, 1614−1624.

(34) Yang, B.-L.; Tian, S.-K. Iron-Catalyzed Four-Component Reaction for the Synthesis of Protected Primary Amines. Eur. J. Org. Chem. 2007, 2007, 4646−4650.

(35) McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. Carbon Dioxide as a Phosgene Replacement: Synthesis and Mechanistic Studies of Urethanes from Amines, CO2, and Alkyl Chlorides. J. Org. Chem. 1995, 60, 2820−2830.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る