リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Realistic Construction of Axion Model with Gauged Peccei-Quinn Symmetry」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Realistic Construction of Axion Model with Gauged Peccei-Quinn Symmetry

鈴木, 資生 東京大学 DOI:10.15083/0002001855

2021.10.04

概要

To date, the most elegant and intriguing solution to the Strong CP problem has been the Peccei-Quinn (PQ) mechanism. The PQ symmetry may, however, be explicitly and badly broken by the quantum gravity effect. Then, to be consistent with the measurement of the neutron electric dipole moment, it is expected that the PQ symmetry is explicitly broken by only highly suppressed non-renormalizable terms. In this thesis, to understand the origin of the PQ symmetry with such high quality, we suggest one general mechanism where the PQ symmetry is protected well by the gauge symmetry. We call this protection gauge symmetry as the gauged PQ symmetry. For one effort, we apply the mechanism to the model where the origin of the PQ symmetry breaking and the supersymmetry breaking is same. From this work, we find a cosmological problem with extra fermions introduced to cancel the anomaly of the gauged PQ symmetry. Those fermions tend to behave as the dark radiation and eventually induce an unacceptably large number of the effective neutrino species. To resolve this problem, we propose one simple model with no un-wanted fermions. This model is the first realistic axion model with the gauged PQ symmetry.

参考文献

[1] C. A. Baker et al., “An Improved experimental limit on the electric dipole moment of the neutron,” Phys. Rev. Lett. 97 (2006) 131801, arXiv:hep-ex/0602020 [hep-ex].

[2] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.

[3] S. W. Hawking, “Quantum Coherence Down the Wormhole,” Phys. Lett. B195 (1987) 337.

[4] G. V. Lavrelashvili, V. A. Rubakov, and P. G. Tinyakov, “Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity,” JETP Lett. 46 (1987) 167–169. [Pisma Zh. Eksp. Teor. Fiz.46,134(1987)].

[5] S. B. Giddings and A. Strominger, “Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity,” Nucl. Phys. B307 (1988) 854–866.

[6] S. R. Coleman, “Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence,” Nucl. Phys. B307 (1988) 867–882.

[7] S. R. Coleman, “Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant,” Nucl. Phys. B310 (1988) 643–668.

[8] G. Gilbert, “WORMHOLE INDUCED PROTON DECAY,” Nucl. Phys. B328 (1989) 159–170.

[9] T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D83 (2011) 084019, arXiv:1011.5120 [hep-th].

[10] S. M. Barr and D. Seckel, “Planck scale corrections to axion models,” Phys. Rev. D46 (1992) 539–549.

[11] J. E. Kim, “Weak Interaction Singlet and Strong CP Invariance,” Phys. Rev. Lett. 43 (1979) 103.

[12] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Can Confinement Ensure Natural CP Invariance of Strong Interactions?,” Nucl. Phys. B166 (1980) 493–506.

[13] H. Fukuda, M. Ibe, M. Suzuki, and T. T. Yanagida, “A ”gauged” U (1) Peccei–Quinn symmetry,” Phys. Lett. B771 (2017) 327–331, arXiv:1703.01112 [hep-ph].

[14] J. E. Kim, “Invisible Axion and Neutrino Oscillation in SU(11),” Phys. Rev. D24 (1981) 3007.

[15] H. M. Georgi, L. J. Hall, and M. B. Wise, “Grand Unified Models With an Automatic Peccei-Quinn Symmetry,” Nucl. Phys. B192 (1981) 409–416.

[16] S. Dimopoulos, P. H. Frampton, H. Georgi, and M. B. Wise, “AUTOMATIC INVISIBLE AXION WITHOUT DOMAIN WALLS,” Phys. Lett. B117 (1982) 185.

[17] P. H. Frampton, “Simultaneous Solution of Strong CP and Flavor Problems,” Phys. Rev. D25 (1982) 294.

[18] K. Kang, I.-G. Koh, and S. Ouvry, “The Strong CP Problem and Axion Invisibility,” Phys. Lett. B119 (1982) 361.

[19] G. Lazarides and Q. Shafi, “Axion Models with No Domain Wall Problem,” Phys. Lett. B115 (1982) 21–25.

[20] M. Kamionkowski and J. March-Russell, “Planck scale physics and the Peccei-Quinn mechanism,” Phys. Lett. B282 (1992) 137–141, arXiv:hep-th/9202003 [hep-th].

[21] R. Holman, S. D. H. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, and L. M. Widrow, “Solutions to the strong CP problem in a world with gravity,” Phys. Lett. B282 (1992) 132–136, arXiv:hep-ph/9203206 [hep-ph].

[22] M. Dine, “Problems of naturalness: Some lessons from string theory,” in Conference on Topics in Quantum Gravity Cincinnati, Ohio, April 3-4, 1992, pp. 157–169. 1992. arXiv:hep-th/9207045 [hep-th]. http://inspirehep.net/record/32647/files/arXiv:hep-th_9207045.pdf.

[23] A. G. Dias, V. Pleitez, and M. D. Tonasse, “Naturally light invisible axion in models with large local discrete symmetries,” Phys. Rev. D67 (2003) 095008, arXiv:hep-ph/0211107 [hep-ph].

[24] L. M. Carpenter, M. Dine, and G. Festuccia, “Dynamics of the Peccei Quinn Scale,” Phys. Rev. D80 (2009) 125017, arXiv:0906.1273 [hep-th].

[25] K. Harigaya, M. Ibe, K. Schmitz, and T. T. Yanagida, “Peccei-Quinn symmetry from a gauged discrete R symmetry,” Phys. Rev. D88 no. 7, (2013) 075022, arXiv:1308.1227 [hep-ph].

[26] K. Harigaya, M. Ibe, K. Schmitz, and T. T. Yanagida, “Peccei-Quinn Symmetry from Dynamical Supersymmetry Breaking,” Phys. Rev. D92 no. 7, (2015) 075003, arXiv:1505.07388 [hep-ph].

[27] M. Redi and R. Sato, “Composite Accidental Axions,” JHEP 05 (2016) 104, arXiv:1602.05427 [hep-ph].

[28] L. Di Luzio, E. Nardi, and L. Ubaldi, “Accidental Peccei-Quinn symmetry protected to arbitrary order,” Phys. Rev. Lett. 119 no. 1, (2017) 011801, arXiv:1704.01122 [hep-ph].

[29] E. Witten, “Some Properties of O(32) Superstrings,” Phys. Lett. B149 (1984) 351–356.

[30] R. Kallosh, A. D. Linde, D. A. Linde, and L. Susskind, “Gravity and global symmetries,” Phys. Rev. D52 (1995) 912–935, arXiv:hep-th/9502069 [hep-th].

[31] P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206 [hep-th].

[32] H.-C. Cheng and D. E. Kaplan, “Axions and a gauged Peccei-Quinn symmetry,” arXiv:hep-ph/0103346 [hep-ph].

[33] K. I. Izawa, T. Watari, and T. Yanagida, “Higher dimensional QCD without the strong CP problem,” Phys. Lett. B534 (2002) 93–96, arXiv:hep-ph/0202171 [hep-ph].

[34] C. T. Hill and A. K. Leibovich, “Natural theories of ultralow mass PNGB’s: Axions and quintessence,” Phys. Rev. D66 (2002) 075010, arXiv:hep-ph/0205237 [hep-ph].

[35] A. Fukunaga and K. I. Izawa, “Warped QCD without the strong CP problem,” Phys. Lett. B562 (2003) 251–256, arXiv:hep-ph/0301273 [hep-ph].

[36] K. I. Izawa, T. Watari, and T. Yanagida, “Supersymmetric and CP-symmetric QCD in higher dimensions,” Phys. Lett. B589 (2004) 141–146, arXiv:hep-ph/0403090 [hep-ph].

[37] K.-w. Choi, “A QCD axion from higher dimensional gauge field,” Phys. Rev. Lett. 92 (2004) 101602, arXiv:hep-ph/0308024 [hep-ph].

[38] B. Grzadkowski and J. Wudka, “Note on the strong CP problem from a 5-dimensional perspective,” Phys. Rev. D77 (2008) 096004, arXiv:0705.4307 [hep-ph].

[39] H. Fukuda, M. Ibe, M. Suzuki, and T. T. Yanagida, “Gauged Peccei-Quinn symmetry — A case of simultaneous breaking of SUSY and PQ symmetry,” JHEP 07 (2018) 128, arXiv:1803.00759 [hep-ph].

[40] M. Ibe, M. Suzuki, and T. T. Yanagida, “B — L as a Gauged Peccei-Quinn Symmetry,” JHEP 08 (2018) 049, arXiv:1805.10029 [hep-ph].

[41] S. Weinberg, “The U(1) Problem,” Phys. Rev. D11 (1975) 3583–3593.

[42] G. ’t Hooft, “How Instantons Solve the U(1) Problem,” Phys. Rept. 142 (1986) 357–387.

[43] R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.

[44] S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.

[45] F. Wilczek, “Problem of Strong p and t Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.

[46] W. A. Bardeen, R. D. Peccei, and T. Yanagida, “CONSTRAINTS ON VARIANT AXION MODELS,” Nucl. Phys. B279 (1987) 401.

[47] Y. Asano, E. Kikutani, S. Kurokawa, T. Miyachi, M. Miyajima, Y. Nagashima, T. Shinkawa, S. Sugimoto, and Y. Yoshimura, “Search for a Rare Decay Mode K+ —> pi+ Neutrino anti-neutrino and Axion,” Phys. Lett. 107B (1981) 159. [,411(1981)].

[48] A. R. Zhitnitsky, “On Possible Suppression of the Axion Hadron Interactions. (In Russian),” Sov. J. Nucl. Phys. 31 (1980) 260. [Yad. Fiz.31,497(1980)].

[49] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. B104 (1981) 199–202.

[50] J. E. Kim, “A COMPOSITE INVISIBLE AXION,” Phys. Rev. D31 (1985) 1733.

[51] K. Choi and J. E. Kim, “DYNAMICAL AXION,” Phys. Rev. D32 (1985) 1828.

[52] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, “The QCD axion, precisely,” JHEP 01 (2016) 034, arXiv:1511.02867 [hep-ph].

[53] G. G. Ra↵elt, “Astrophysical axion bounds,” Lect. Notes Phys. 741 (2008) 51–71, arXiv:hep-ph/0611350 [hep-ph].

[54] G. G. Ra↵elt, “Particle physics from stars,” Ann. Rev. Nucl. Part. Sci. 49 (1999) 163–216, arXiv:hep-ph/9903472 [hep-ph].

[55] K. S. Hirata et al., “Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN 1987a,” Phys. Rev. D38 (1988) 448–458.

[56] IMB Collaboration, C. B. Bratton et al., “Angular Distribution of Events From Sn1987a,” Phys. Rev. D37 (1988) 3361.

[57] E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, “Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research,” JETP Lett. 45 (1987) 589–592. [,739(1987)].

[58] G. G. Ra↵elt, “Astrophysical methods to constrain axions and other novel particle phenomena,” Phys. Rept. 198 (1990) 1–113.

[59] J. Engel, D. Seckel, and A. C. Hayes, “Emission and detectability of hadronic axions from SN1987A,” Phys. Rev. Lett. 65 (1990) 960–963.

[60] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental Searches for the Axion and Axion-Like Particles,” Ann. Rev. Nucl. Part. Sci. 65 (2015) 485–514, arXiv:1602.00039 [hep-ex].

[61] I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102 (2018) 89–159, arXiv:1801.08127 [hep-ph].

[62] P. Sikivie, “Experimental Tests of the Invisible Axion,” Phys. Rev. Lett. 51 (1983) 1415–1417. [,321(1983)].

[63] P. Sikivie, “Detection Rates for ’Invisible’ Axion Searches,” Phys. Rev. D32 (1985) 2988. [Erratum: Phys. Rev.D36,974(1987)].

[64] ADMX Collaboration, S. J. Asztalos et al., “A SQUID-based microwave cavity search for dark-matter axions,” Phys. Rev. Lett. 104 (2010) 041301, arXiv:0910.5914 [astro-ph.CO].

[65] ADMX Collaboration, N. Du et al., “A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment,” Phys. Rev. Lett. 120 no. 15, (2018) 151301, arXiv:1804.05750 [hep-ex].

[66] CAST Collaboration, K. Zioutas et al., “First results from the CERN Axion Solar Telescope (CAST),” Phys. Rev. Lett. 94 (2005) 121301, arXiv:hep-ex/0411033 [hep-ex].

[67] CAST Collaboration, S. Andriamonje et al., “An Improved limit on the axion-photon coupling from the CAST experiment,” JCAP 0704 (2007) 010, arXiv:hep-ex/0702006 [hep-ex].

[68] M. Yamaguchi, J. Yokoyama, and M. Kawasaki, “Numerical analysis of formation and evolution of global strings in ( 2+1)-dimensions,” Prog. Theor. Phys. 100 (1998) 535–545, arXiv:hep-ph/9808326 [hep-ph].

[69] M. Yamaguchi, M. Kawasaki, and J. Yokoyama, “Evolution of axionic strings and spectrum of axions radiated from them,” Phys. Rev. Lett. 82 (1999) 4578–4581, arXiv:hep-ph/9811311 [hep-ph].

[70] M. Yamaguchi, J. Yokoyama, and M. Kawasaki, “Evolution of a global string network in a matter dominated universe,” Phys. Rev. D61 (2000) 061301, arXiv:hep-ph/9910352 [hep-ph].

[71] T. Hiramatsu, M. Kawasaki, T. Sekiguchi, M. Yamaguchi, and J. Yokoyama, “Improved estimation of radiated axions from cosmological axionic strings,” Phys. Rev. D83 (2011) 123531, arXiv:1012.5502 [hep-ph].

[72] T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi, “Production of dark matter axions from collapse of string-wall systems,” Phys. Rev. D85 (2012) 105020, arXiv:1202.5851 [hep-ph]. [Erratum: Phys. Rev.D86,089902(2012)].

[73] T. Hiramatsu, M. Kawasaki, and K. Saikawa, “Evolution of String-Wall Networks and Axionic Domain Wall Problem,” JCAP 1108 (2011) 030, arXiv:1012.4558 [astro-ph.CO].

[74] D. J. Gross, R. D. Pisarski, and L. G. Ya↵e, “QCD and Instantons at Finite Temperature,” Rev. Mod. Phys. 53 (1981) 43.

[75] O. Wantz and E. P. S. Shellard, “Axion Cosmology Revisited,” Phys. Rev. D82 (2010) 123508, arXiv:0910.1066 [astro-ph.CO].

[76] O. Wantz and E. P. S. Shellard, “The Topological susceptibility from grand canonical simulations in the interacting instanton liquid model: Chiral phase transition and axion mass,” Nucl. Phys. B829 (2010) 110–160, arXiv:0908.0324 [hep-ph].

[77] M. S. Turner, “Cosmic and Local Mass Density of Invisible Axions,” Phys. Rev. D33 (1986) 889–896.

[78] K. J. Bae, J.-H. Huh, and J. E. Kim, “Update of axion CDM energy,” JCAP 0809 (2008) 005, arXiv:0806.0497 [hep-ph].

[79] V. F. Mukhanov and G. V. Chibisov, “Quantum Fluctuations and a Nonsingular Universe,” JETP Lett. 33 (1981) 532–535. [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)].

[80] S. W. Hawking, “The Development of Irregularities in a Single Bubble Inflationary Universe,” Phys. Lett. 115B (1982) 295.

[81] A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations,” Phys. Lett. 117B (1982) 175–178.

[82] A. H. Guth and S. Y. Pi, “Fluctuations in the New Inflationary Universe,” Phys. Rev. Lett. 49 (1982) 1110–1113.

[83] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe,” Phys. Rev. D28 (1983) 679.

[84] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XX. Constraints on inflation,” arXiv:1502.02114 [astro-ph.CO].

[85] S. B. Giddings and A. Strominger, “Axion Induced Topology Change in Quantum Gravity and String Theory,” Nucl. Phys. B306 (1988) 890–907.

[86] K.-M. Lee, “Wormholes and Goldstone Bosons,” Phys. Rev. Lett. 61 (1988) 263–266.

[87] L. F. Abbott and M. B. Wise, “Wormholes and Global Symmetries,” Nucl. Phys. B325 (1989) 687–704.

[88] S. R. Coleman and K.-M. Lee, “WORMHOLES MADE WITHOUT MASSLESS MATTER FIELDS,” Nucl. Phys. B329 (1990) 387–409.

[89] S. W. Hawking and R. Laflamme, “Baby Universes and the Nonrenormalizability of Gravity,” Phys. Lett. B209 (1988) 39–41.

[90] L. Susskind, “Trouble for remnants,” arXiv:hep-th/9501106 [hep-th].

[91] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The String landscape, black holes and gravity as the weakest force,” JHEP 06 (2007) 060, arXiv:hep-th/0601001 [hep-th].

[92] L. Randall, “Composite axion models and Planck scale physics,” Phys. Lett. B284 (1992) 77–80.

[93] M. Kawasaki and K. Nakayama, “Axions: Theory and Cosmological Role,” Ann. Rev. Nucl. Part. Sci. 63 (2013) 69–95, arXiv:1301.1123 [hep-ph].

[94] M. Kawasaki, E. Sonomoto, and T. T. Yanagida, “Cosmologically allowed regions for the axion decay constant Fa,” arXiv:1801.07409 [hep-ph].

[95] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, 2000. http://www.cambridge.org/mw/academic/subjects/physics/ theoretical-physics-and-mathematical-physics/ cosmic-strings-and-other-topological-defects?format=PB.

[96] K.-I. Izawa and T. Yanagida, “Dynamical supersymmetry breaking in vector- like gauge theories,” Prog. Theor. Phys. 95 (1996) 829–830, arXiv:hep-th/9602180 [hep-th].

[97] K. A. Intriligator and S. D. Thomas, “Dynamical supersymmetry breaking on quantum moduli spaces,” Nucl. Phys. B473 (1996) 121–142, arXiv:hep-th/9603158 [hep-th].

[98] I. A✏eck, M. Dine, and N. Seiberg, “Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications,” Nucl. Phys. B256 (1985) 557–599.

[99] A. E. Nelson and N. Seiberg, “R symmetry breaking versus supersymmetry breaking,” Nucl. Phys. B416 (1994) 46–62, arXiv:hep-ph/9309299 [hep-ph].

[100] L. M. Krauss and F. Wilczek, “Discrete Gauge Symmetry in Continuum Theories,” Phys. Rev. Lett. 62 (1989) 1221.

[101] J. Preskill and L. M. Krauss, “Local Discrete Symmetry and Quantum Mechanical Hair,” Nucl. Phys. B341 (1990) 50–100.

[102] J. Preskill, S. P. Trivedi, F. Wilczek, and M. B. Wise, “Cosmology and broken discrete symmetry,” Nucl. Phys. B363 (1991) 207–220.

[103] T. Banks and M. Dine, “Note on discrete gauge anomalies,” Phys. Rev. D45 (1992) 1424–1427, arXiv:hep-th/9109045 [hep-th].

[104] L. E. Ibanez and G. G. Ross, “Discrete gauge symmetry anomalies,” Phys. Lett. B260 (1991) 291–295.

[105] L. E. Ibanez, “More about discrete gauge anomalies,” Nucl. Phys. B398 (1993) 301–318, arXiv:hep-ph/9210211 [hep-ph].

[106] C. Csaki and H. Murayama, “Discrete anomaly matching,” Nucl. Phys. B515 (1998) 114–162, arXiv:hep-th/9710105 [hep-th].

[107] K. Kurosawa, N. Maru, and T. Yanagida, “Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons,” Phys. Lett. B512 (2001) 203–210, arXiv:hep-ph/0105136 [hep-ph].

[108] H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Schieren, K. Schmidt-Hoberg, and P. K. S. Vaudrevange, “A unique ZR symmetry for the MSSM,” Phys. Lett. B694 (2011) 491–495, arXiv:1009.0905 [hep-ph].

[109] M. Fallbacher, M. Ratz, and P. K. S. Vaudrevange, “No-go theorems for R symmetries in four-dimensional GUTs,” Phys. Lett. B705 (2011) 503–506, arXiv:1109.4797 [hep-ph].

[110] J. L. Evans, M. Ibe, J. Kehayias, and T. T. Yanagida, “Non-Anomalous Discrete R-symmetry Decrees Three Generations,” Phys. Rev. Lett. 109 (2012) 181801, arXiv:1111.2481 [hep-ph].

[111] K. I. Izawa and T. Yanagida, “R invariant natural unification,” Prog. Theor. Phys. 97 (1997) 913–920, arXiv:hep-ph/9703350 [hep-ph].

[112] K. Harigaya, M. Ibe, and M. Suzuki, “Mass-splitting between haves and have-nots — symmetry vs. Grand Unified Theory,” JHEP 09 (2015) 155, arXiv:1505.05024 [hep-ph].

[113] N. Seiberg, “Exact results on the space of vacua of four-dimensional SUSY gauge theories,” Phys. Rev. D49 (1994) 6857–6863, arXiv:hep-th/9402044 [hep-th].

[114] M. Ibe, K. I. Izawa, Y. Nakayama, Y. Shinbara, and T. Yanagida, “Conformally sequestered SUSY breaking in vector-like gauge theories,” Phys. Rev. D73 (2006) 015004, arXiv:hep-ph/0506023 [hep-ph].

[115] M. Ibe, K. I. Izawa, Y. Nakayama, Y. Shinbara, and T. Yanagida, “More on conformally sequestered SUSY breaking,” Phys. Rev. D73 (2006) 035012, arXiv:hep-ph/0509229 [hep-ph].

[116] M. Ibe, Y. Nakayama, and T. T. Yanagida, “Conformal Gauge Mediation,” Phys. Lett. B649 (2007) 292–298, arXiv:hep-ph/0703110 [HEP-PH].

[117] Z. Chacko, M. A. Luty, and E. Ponton, “Calculable dynamical supersymmetry breaking on deformed moduli spaces,” JHEP 12 (1998) 016, arXiv:hep-th/9810253 [hep-th].

[118] M. Ibe, Y. Nakayama, H. Murayama, and T. T. Yanagida, “Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess,” JHEP 04 (2009) 087, arXiv:0902.2914 [hep-ph].

[119] M. Ibe, R. Sato, T. T. Yanagida, and K. Yonekura, “Gravitino Dark Matter and Light Gluino in an R-invariant Low Scale Gauge Mediation,” JHEP 04 (2011) 077, arXiv:1012.5466 [hep-ph].

[120] M. Dine and J. Mason, “Gauge mediation in metastable vacua,” Phys. Rev. D77 (2008) 016005, arXiv:hep-ph/0611312 [hep-ph].

[121] J. A. Casas and C. Munoz, “A Natural solution to the mu problem,” Phys. Lett. B306 (1993) 288–294, arXiv:hep-ph/9302227 [hep-ph].

[122] ATLAS Collaboration, G. Aad et al., “Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at √s = 8 TeV with the ATLAS detector,” JHEP 08 (2015) 105, arXiv:1505.04306 [hep-ex].

[123] ATLAS Collaboration, G. Aad et al., “Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s =8 TeV with the ATLAS detector,” JHEP 10 (2015) 150, arXiv:1504.04605 [hep-ex].

[124] ATLAS Collaboration, G. Aad et al., “Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at √s = 8 TeV with the ATLAS detector,” JHEP 11 (2014) 104, arXiv:1409.5500 [hep-ex].

[125] ATLAS Collaboration, G. Aad et al., “Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at √s = 8 TeV with the ATLAS detector,” Phys. Rev. D91 no. 11, (2015) 112011, arXiv:1503.05425 [hep-ex].

[126] G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi, “Gaugino mass without singlets,” JHEP 12 (1998) 027, arXiv:hep-ph/9810442 [hep-ph].

[127] L. Randall and R. Sundrum, “Out of this world supersymmetry breaking,” Nucl. Phys. B557 (1999) 79–118, arXiv:hep-th/9810155 [hep-th].

[128] B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto, and T. T. Yanagida, “Pure gravity mediation of supersymmetry breaking at the Large Hadron Collider,” Phys. Rev. D87 no. 1, (2013) 015028, arXiv:1207.5453 [hep-ph].

[129] M. Ibe, T. Moroi, and T. T. Yanagida, “Possible Signals of Wino LSP at the Large Hadron Collider,” Phys. Lett. B644 (2007) 355–360, arXiv:hep-ph/0610277 [hep-ph].

[130] M. Ibe and T. T. Yanagida, “The Lightest Higgs Boson Mass in Pure Gravity Mediation Model,” Phys. Lett. B709 (2012) 374–380, arXiv:1112.2462 [hep-ph].

[131] M. Ibe, S. Matsumoto, and T. T. Yanagida, “Pure Gravity Mediation,” Phys. Rev. D85 (2012) 095011, arXiv:1202.2253 [hep-ph].

[132] G. F. Giudice and A. Romanino, “Split supersymmetry,” Nucl. Phys. B699 (2004) 65–89, arXiv:hep-ph/0406088 [hep-ph]. [Erratum: Nucl. Phys.B706,487(2005)].

[133] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, “Aspects of split supersymmetry,” Nucl. Phys. B709 (2005) 3–46, arXiv:hep-ph/0409232 [hep-ph].

[134] J. D. Wells, “PeV-scale supersymmetry,” Phys. Rev. D71 (2005) 015013, arXiv:hep-ph/0411041 [hep-ph].

[135] N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, and T. Zorawski, “Simply Unnatural Supersymmetry,” arXiv:1212.6971 [hep-ph].

[136] K. Harigaya, M. Ibe, and T. T. Yanagida, “A Closer Look at Gaugino Masses in Pure Gravity Mediation Model/Minimal Split SUSY Model,” JHEP 12 (2013) 016, arXiv:1310.0643 [hep-ph].

[137] E. Calabrese et al., “Cosmological Parameters from pre-Planck CMB Measurements: a 2017 Update,” Phys. Rev. D95 no. 6, (2017) 063525, arXiv:1702.03272 [astro-ph.CO].

[138] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A. Strumia, “Towards a complete theory of thermal leptogenesis in the SM and MSSM,” Nucl. Phys. B685 (2004) 89–149, arXiv:hep-ph/0310123 [hep-ph].

[139] W. Buchmuller, R. D. Peccei, and T. Yanagida, “Leptogenesis as the origin of matter,” Ann. Rev. Nucl. Part. Sci. 55 (2005) 311–355, arXiv:hep-ph/0502169 [hep-ph].

[140] S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis,” Phys. Rept. 466 (2008) 105–177, arXiv:0802.2962 [hep-ph].

[141] J. H. Chang, R. Essig, and S. D. McDermott, “Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle,” arXiv:1803.00993 [hep-ph].

[142] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Are There Real Goldstone Bosons Associated with Broken Lepton Number?,” Phys. Lett. 98B (1981) 265–268.

[143] D. H. Lyth, “Axions and inflation: Sitting in the vacuum,” Phys. Rev. D45 (1992) 3394–3404.

[144] S. Borsanyi et al., “Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,” Nature 539 no. 7627, (2016) 69–71, arXiv:1606.07494 [hep-lat].

[145] G. Ballesteros, J. Redondo, A. Ringwald, and C. Tamarit, “Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke,” JCAP 1708 no. 08, (2017) 001, arXiv:1610.01639 [hep-ph].

[146] A. Ringwald, “Axion mass in the case of post-inflationary Peccei-Quinn symmetry breaking,” 2018. arXiv:1805.09618 [hep-ph].

[147] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69 (1990) 1–547.

[148] M. Kawasaki, K. Kohri, and T. Moroi, “Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles,” Phys. Rev. D71 (2005) 083502, arXiv:astro-ph/0408426 [astro-ph].

[149] K. Jedamzik, “Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles,” Phys. Rev. D74 (2006) 103509, arXiv:hep-ph/0604251 [hep-ph].

[150] M. Kawasaki, K. Kohri, T. Moroi, and Y. Takaesu, “Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles,” Phys. Rev. D97 no. 2, (2018) 023502, arXiv:1709.01211 [hep-ph].

[151] M. Kawasaki, K. Nakayama, and M. Senami, “Cosmological implications of supersymmetric axion models,” JCAP 0803 (2008) 009, arXiv:0711.3083 [hep-ph].

[152] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, “Pseudoparticle Solutions of the Yang-Mills Equations,” Phys. Lett. B59 (1975) 85–87. [,350(1975)].

[153] M. Shifman, Advanced topics in quantum field theory. Cambridge Univ. Press, Cambridge, UK, 2012. http://www.cambridge.org/mw/academic/ subjects/physics/theoretical-physics-and-mathematical-physics/ advanced-topics-quantum-field-theory-lecture-course?format=AR.

[154] S. P. Martin, “A Supersymmetry primer,” arXiv:hep-ph/9709356 [hep-ph]. [Adv. Ser. Direct. High Energy Phys.18,1(1998)].

[155] A. Salam and J. A. Strathdee, “Supergauge Transformations,” Nucl. Phys. B76 (1974) 477–482.

[156] S. Ferrara, J. Wess, and B. Zumino, “Supergauge Multiplets and Superfields,” Phys. Lett. 51B (1974) 239.

[157] M. T. Grisaru, W. Siegel, and M. Rocek, “Improved Methods for Supergraphs,” Nucl. Phys. B159 (1979) 429.

[158] N. Seiberg, “Naturalness versus supersymmetric nonrenormalization theorems,” Phys. Lett. B318 (1993) 469–475, arXiv:hep-ph/9309335 [hep-ph].

[159] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry. Cambridge University Press, 2013.

[160] S. Weinberg, “Nonrenormalization theorems in nonrenormalizable theories,” Phys. Rev. Lett. 80 (1998) 3702–3705, arXiv:hep-th/9803099 [hep-th].

[161] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, “Locally Supersymmetric Grand Unification,” Phys. Rev. Lett. 49 (1982) 970.

[162] R. Barbieri, S. Ferrara, and C. A. Savoy, “Gauge Models with Spontaneously Broken Local Supersymmetry,” Phys. Lett. 119B (1982) 343.

[163] L. E. Ibanez, “Locally Supersymmetric SU(5) Grand Unification,” Phys. Lett. 118B (1982) 73–78.

[164] L. J. Hall, J. D. Lykken, and S. Weinberg, “Supergravity as the Messenger of Supersymmetry Breaking,” Phys. Rev. D27 (1983) 2359–2378.

[165] N. Ohta, “GRAND UNIFIED THEORIES BASED ON LOCAL SUPERSYMMETRY,” Prog. Theor. Phys. 70 (1983) 542.

[166] J. R. Ellis, D. V. Nanopoulos, and K. Tamvakis, “Grand Unification in Simple Supergravity,” Phys. Lett. 121B (1983) 123–129.

[167] L. Alvarez-Gaume, J. Polchinski, and M. B. Wise, “Minimal Low-Energy Supergravity,” Nucl. Phys. B221 (1983) 495.

[168] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press, Princeton, NJ, USA, 1992.

[169] I. Affleck, M. Dine, and N. Seiberg, “Dynamical Supersymmetry Breaking in Supersymmetric QCD,” Nucl. Phys. B241 (1984) 493–534.

[170] S. F. Cordes, “The Instanton Induced Superpotential in Supersymmetric QCD,” Nucl. Phys. B273 (1986) 629–648.

[171] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl. Phys. B435 (1995) 129–146, arXiv:hep-th/9411149 [hep-th].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る