リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical studies on baryogenesis, neutrino mass, and dark matter in extended Higgs models」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical studies on baryogenesis, neutrino mass, and dark matter in extended Higgs models

榎本, 一輝 大阪大学 DOI:10.18910/87815

2022.03.24

概要

素粒子標準模型は様々な実験事実を説明することに成功した理論であるが、バリオン数非対称性、ニュートリノ振動、暗黒物質の存在などの現象を説明することができない。したがって、標準模型を超える新物理の存在は疑いようがない。標準模型では最小のヒッグスセクターが採用されているが、これは原理なく仮定されているため、標準模型を超えた新物理では最小でないヒッグスセクターが実現されている可能性が考えられる。このような観点から、拡張ヒッグスセクターを含む様々な新物理模型が研究されてきた。その中のいくつかでは、拡張されたヒッグスセクターが標準模型で説明できない未解明現象の起源となっている。例えば、バリオン数非対称性はCP対称性の破れを伴う拡張されたヒッグスポテンシャルによる電弱バリオン数生成によって説明できる。また、ニュートリノ振動の起源であるニュートリノの質量は新しいスカラーボソンの量子効果によって生成される可能性がある。さらに、新しいスカラーボソンが電気的に中性で安定であれば、暗黒物質の候補となりうる。このような新物理模型は電弱スケールからTeVスケールの物理であり、今後数十年の間に実験によって徹底的に検証されることが期待されている。したがって、未解明現象の起源となる拡張ヒッグスセクターを含んだ新物理模型を検討し、それらを将来実験でどのように検証するかを調べることは、現在の素粒子物理学において非常に興味深く重要な研究である。本博士論文では、この理念に基づいた我々の研究を2つ議論する。

まず、ヒッグス二重項を二つ含む模型における電弱バリオジェネシスを考える。この模型では拡張されたヒッグスポテンシャルによって強い1次の電弱相転移を起こすことが可能であり、またCPを破る位相を湯川結合とヒッグスポテンシャルに含むため、電弱バリオン数生成によってバリオン数非対称性を説明できる可能性がある。我々は、CPを破る位相の負の相関によって電子の電気双極子モーメントの測定からの厳しい制限を避けることができるパラメータ領域に着目し、観測されたバリオン数を再現することが可能であるかを調べた。結果として、我々はバリオン数非対称性を説明することができるいくつかのベンチマークシナリオを発見した。これらのシナリオは将来の加速器実験、フレーバー実験、重力波観測実験などを用いて多角的に検証することが可能である。

次に、観測されたバリオンの非対称性に加えて、ニュートリノ質量の起源と暗黒物質の存在も同時に説明できるTeVスケールの新物理模型を議論する。この模型は、先に議論した模型の拡張となっており、新しく課したZ2対称性において奇パリティを持った粒子を導入する。これらの新粒子の量子効果によってニュートリノのマヨラナ質量が生成される。また、Z2対称性によって、奇パリティを持った最も軽い粒子が暗黒物質の候補となる。我々はこの模型が3つの問題を全て同時に説明することが可能であるか調べた。結果として、現在の実験的制限を回避しながら全ての問題を同時に説明できるベンチマークシナリオを発見した。このシナリオは将来の加速器実験、フレーバー実験、電気双極子モーメントの測定、暗黒物質の直接探索、レプトンフレーバーの破れの探索、重力波観測実験など様々な実験を用いて多角的に検証されることが期待される。

参考文献

[1] P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2020, no.8, 083C01 (2020).

[2] B. D. Fields, K. A. Olive, T. H. Yeh and C. Young, JCAP 03, 010 (2020) [erratum: JCAP 11, E02 (2020)] [arXiv:1912.01132 [astro-ph.CO]].

[3] N. Aghanim et al. [Planck], “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] [arXiv:1807.06209 [astro-ph.CO]].

[4] Y. Fukuda et al. [Super-Kamiokande], “Evidence for oscillation of atmospheric neu- trinos,” Phys. Rev. Lett. 81, 1562-1567 (1998) [arXiv:hep-ex/9807003 [hep-ex]].

[5] Q. R. Ahmad et al. [SNO], “Measurement of the rate of νe + d p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 87, 071301 (2001) [arXiv:nucl-ex/0106015 [nucl-ex]].

[6] Q. R. Ahmad et al. [SNO], “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89, 011301 (2002) [arXiv:nucl-ex/0204008 [nucl-ex]].

[7] K. Abe et al. [T2K], “Improved constraints on neutrino mixing from the T2K ex- periment with 3.13 1021 protons on target,” Phys. Rev. D 103, no.11, 112008(2021) [arXiv:2101.03779 [hep-ex]].

[8] M. A. Acero et al. [NOvA], “An Improved Measurement of Neutrino Oscillation Parameters by the NOvA Experiment,” [arXiv:2108.08219 [hep-ex]].

[9] D. Adey et al. [Daya Bay], “Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay,” Phys. Rev. Lett. 121, no.24, 241805 (2018) [arXiv:1809.02261 [hep-ex]].

[10] B. Aharmim et al. [SNO], Phys. Rev. C 88, 025501 (2013) doi:10.1103/PhysRevC.88.025501 [arXiv:1109.0763 [nucl-ex]].

[11] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264-1266 (1967)

[12] A. Salam, “Weak and Electromagnetic Interactions,” Conf. Proc. C 680519, 367- 377 (1968)

[13] G. Aad et al. [ATLAS], “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1-29 (2012) [arXiv:1207.7214 [hep-ex]].

[14] S. Chatrchyan et al. [CMS], “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716, 30-61 (2012) [arXiv:1207.7235 [hep-ex]].

[15] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23, 347-356 (1981)

[16] K. Sato, “First Order Phase Transition of a Vacuum and Expansion of the Universe,” Mon. Not. Roy. Astron. Soc. 195, 467-479 (1981) NORDITA-80-29.

[17] A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967)

[18] M. Yoshimura, “Unified Gauge Theories and the Baryon Number of the Universe,” Phys. Rev. Lett. 41, 281-284 (1978) [erratum: Phys. Rev. Lett. 42, 746 (1979)]

[19] S. Weinberg, “Cosmological Production of Baryons,” Phys. Rev. Lett. 42, 850-853 (1979)

[20] I. Affleck and M. Dine, “A New Mechanism for Baryogenesis,” Nucl. Phys. B 249, 361-380 (1985)

[21] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, “On the Anomalous Elec- troweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. B 155, 36 (1985)

[22] M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys. Lett. B 174, 45-47 (1986)

[23] F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the Weinberg- Salam Theory,” Phys. Rev. D 30, 2212 (1984)

[24] M. B. Gavela, P. Hernandez, J. Orloff and O. Pene, “Standard model CP viola- tion and baryon asymmetry,” Mod. Phys. Lett. A 9, 795-810 (1994) [arXiv:hep- ph/9312215 [hep-ph]]; M. B. Gavela, M. Lozano, J. Orloff and O. Pene, Nucl. Phys. B 430, 345-381 (1994) [arXiv:hep-ph/9406288 [hep-ph]]; M. B. Gavela, P. Hernan- dez, J. Orloff, O. Pene and C. Quimbay, “Standard model CP violation and baryon asymmetry. Part 2: Finite temperature,” ibid 430, 382-426 (1994) [arXiv:hep- ph/9406289 [hep-ph]].

[25] P. Huet and E. Sather, “Electroweak baryogenesis and standard model CP viola- tion,” Phys. Rev. D 51, 379-394 (1995) [arXiv:hep-ph/9404302 [hep-ph]].

[26] M. E. Shaposhnikov, “Baryon Asymmetry of the Universe in Standard Electroweak Theory,” Nucl. Phys. B 287, 757-775 (1987)

[27] A. I. Bochkarev and M. E. Shaposhnikov, “Electroweak Production of Baryon Asym- metry and Upper Bounds on the Higgs and Top Masses,” Mod. Phys. Lett. A 2, 417 (1987)

[28] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, “Is there a hot electroweak phase transition at mH ≳ mW ?,” Phys. Rev. Lett. 77, 2887-2890 (1996) [arXiv:hep-ph/9605288 [hep-ph]];

[29] M. D’Onofrio and K. Rummukainen, “Standard model cross-over on the lattice,” Phys. Rev. D 93, no.2, 025003 (2016) [arXiv:1508.07161 [hep-ph]].

[30] G. W. Anderson and L. J. Hall, “The Electroweak phase transition and baryogene- sis,” Phys. Rev. D 45, 2685-2698 (1992)

[31] J. R. Espinosa and M. Quiros, “The Electroweak phase transition with a singlet,” Phys. Lett. B 305, 98-105 (1993) [arXiv:hep-ph/9301285 [hep-ph]].

[32] J. Choi and R. R. Volkas, “Real Higgs singlet and the electroweak phase transition in the Standard Model,” Phys. Lett. B 317, 385-391 (1993) [arXiv:hep-ph/9308234 [hep-ph]].

[33] S. W. Ham, Y. S. Jeong and S. K. Oh, “Electroweak phase transition in an extension of the standard model with a real Higgs singlet,” J. Phys. G 31, no.8, 857-871 (2005) [arXiv:hep-ph/0411352 [hep-ph]].

[34] S. J. Huber, T. Konstandin, T. Prokopec and M. G. Schmidt, “Electroweak Phase Transition and Baryogenesis in the nMSSM,” Nucl. Phys. B 757, 172-196 (2006) [arXiv:hep-ph/0606298 [hep-ph]].

[35] A. Ahriche, “What is the criterion for a strong first order electroweak phase tran- sition in singlet models?,” Phys. Rev. D 75, 083522 (2007) [arXiv:hep-ph/0701192 [hep-ph]].

[36] J. M. Cline, G. Laporte, H. Yamashita and S. Kraml, “Electroweak Phase Tran- sition and LHC Signatures in the Singlet Majoron Model,” JHEP 07, 040 (2009) [arXiv:0905.2559 [hep-ph]].

[37] J. R. Espinosa, T. Konstandin and F. Riva, “Strong Electroweak Phase Transi- tions in the Standard Model with a Singlet,” Nucl. Phys. B 854, 592-630 (2012) [arXiv:1107.5441 [hep-ph]].

[38] J. R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, “Electroweak Baryogenesis in Non-minimal Composite Higgs Models,” JCAP 01, 012 (2012) [arXiv:1110.2876 [hep-ph]].

[39] J. McDonald, “Electroweak baryogenesis and dark matter via a gauge singlet scalar,” Phys. Lett. B 323, 339-346 (1994)

[40] S. Profumo, M. J. Ramsey-Musolf and G. Shaughnessy, “Singlet Higgs phenomenol- ogy and the electroweak phase transition,” JHEP 08, 010 (2007) [arXiv:0705.2425 [hep-ph]].

[41] V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, “Complex Singlet Extension of the Standard Model,” Phys. Rev. D 79, 015018 (2009) [arXiv:0811.0393 [hep-ph]].

[42] J. M. Cline and K. Kainulainen, “Electroweak baryogenesis and dark matter from a singlet Higgs,” JCAP 01, 012 (2013) [arXiv:1210.4196 [hep-ph]].

[43] N. Turok and J. Zadrozny, “Electroweak baryogenesis in the two doublet model,” Nucl. Phys. B 358, 471-493 (1991)

[44] J. M. Cline, K. Kainulainen and A. P. Vischer, “Dynamics of two Higgs doublet CP violation and baryogenesis at the electroweak phase transition,” Phys. Rev. D 54, 2451-2472 (1996) [arXiv:hep-ph/9506284 [hep-ph]].

[45] L. Fromme, S. J. Huber and M. Seniuch, “Baryogenesis in the two-Higgs doublet model,” JHEP 11, 038 (2006) [arXiv:hep-ph/0605242 [hep-ph]].

[46] J. M. Cline, K. Kainulainen and M. Trott, “Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies,” JHEP 11, 089 (2011) [arXiv:1107.3559 [hep-ph]].

[47] S. Tulin and P. Winslow, Phys. Rev. D 84, 034013 (2011) doi:10.1103/PhysRevD.84.034013 [arXiv:1105.2848 [hep-ph]].

[48] T. Liu, M. J. Ramsey-Musolf and J. Shu, “Electroweak Beautygenesis: From b to s CP-violation to the Cosmic Baryon Asymmetry,” Phys. Rev. Lett. 108, 221301 (2012) [arXiv:1109.4145 [hep-ph]].

[49] M. Ahmadvand, “Baryogenesis within the two-Higgs-doublet model in the Elec- troweak scale,” Int. J. Mod. Phys. A 29, no.20, 1450090 (2014) [arXiv:1308.3767 [hep-ph]].

[50] C. W. Chiang, K. Fuyuto and E. Senaha, “Electroweak Baryogenesis with Lepton Flavor Violation,” Phys. Lett. B 762, 315-320 (2016) [arXiv:1607.07316 [hep-ph]].

[51] H. K. Guo, Y. Y. Li, T. Liu, M. Ramsey-Musolf and J. Shu, “Lepton-Flavored Elec- troweak Baryogenesis,” Phys. Rev. D 96, no.11, 115034 (2017) [arXiv:1609.09849 [hep-ph]].

[52] K. Fuyuto, W. S. Hou and E. Senaha, “Electroweak baryogenesis driven by extra top Yukawa couplings,” Phys. Lett. B 776, 402-406 (2018) [arXiv:1705.05034 [hep-ph]]; “Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the Universe,” Phys. Rev. D 101, no.1, 011901 (2020) [arXiv:1910.12404 [hep-ph]].

[53] T. Modak and E. Senaha, “Electroweak baryogenesis via bottom transport,” Phys. Rev. D 99, no.11, 115022 (2019) [arXiv:1811.08088 [hep-ph]]; “Probing Electroweak Baryogenesis induced by extra bottom Yukawa coupling via EDMs and collider sig- natures,” JHEP 11, 025 (2020) [arXiv:2005.09928 [hep-ph]]; “Electroweak baryo- genesis via bottom transport: Complementarity between LHC and future lepton collider probes,” Phys. Lett. B 822, 136695 (2021) [arXiv:2107.12789 [hep-ph]].

[54] P. Basler, M. Mu¨hlleitner and J. Mu¨ller, “Electroweak Baryogenesis in the CP- Violating Two-Higgs Doublet Model,” [arXiv:2108.03580 [hep-ph]].

[55] K. Enomoto, S. Kanemura and Y. Mura, “Electroweak baryogenesis in aligned two Higgs doublet models,” JHEP 01, 104 (2022) [arXiv:2111.13079 [hep-ph]].

[56] T. A. Chowdhury, M. Nemevsek, G. Senjanovic and Y. Zhang, “Dark Matter as the Trigger of Strong Electroweak Phase Transition,” JCAP 02, 029 (2012) [arXiv:1110.5334 [hep-ph]].

[57] D. Borah and J. M. Cline, “Inert Doublet Dark Matter with Strong Electroweak Phase Transition,” Phys. Rev. D 86, 055001 (2012) [arXiv:1204.4722 [hep-ph]].

[58] G. Gil, P. Chankowski and M. Krawczyk, “Inert Dark Matter and Strong Elec- troweak Phase Transition,” Phys. Lett. B 717, 396-402 (2012) [arXiv:1207.0084 [hep-ph]].

[59] H. H. Patel and M. J. Ramsey-Musolf, “Stepping Into Electroweak Symmetry Break- ing: Phase Transitions and Higgs Phenomenology,” Phys. Rev. D 88, 035013 (2013) [arXiv:1212.5652 [hep-ph]].

[60] C. W. Chiang and T. Yamada, “Electroweak phase transition in Georgi–Machacek model,” Phys. Lett. B 735, 295-300 (2014) [arXiv:1404.5182 [hep-ph]].

[61] P. Minkowski, “µ eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B 67, 421-428 (1977); T. Yanagida, “Horizontal gauge symmetry and masses of neu- trinos,” Conf. Proc. C 7902131, 95-99 (1979); “Horizontal Symmetry and Masses of Neutrinos,” Prog. Theor. Phys. 64, 1103 (1980); M. Gell-Mann, P. Ramond andR. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C 790927, 315- 321 (1979) [arXiv:1306.4669 [hep-th]];

[62] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Non- conservation,” Phys. Rev. Lett. 44, 912 (1980). J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22, 2227 (1980)

[63] W. Konetschny and W. Kummer, “Nonconservation of Total Lepton Number with Scalar Bosons,” Phys. Lett. B 70, 433-435 (1977); M. Magg and C. Wetterich, Phys. Lett. B 94, 61-64 (1980); G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B 181, 287-300 (1981).

[64] R. Foot, H. Lew, X. G. He and G. C. Joshi, “Seesaw Neutrino Masses Induced by a Triplet of Leptons,” Z. Phys. C 44, 441 (1989)

[65] A. G. Akeroyd and M. Aoki, “Single and pair production of doubly charged Higgs bosons at hadron colliders,” Phys. Rev. D 72, 035011 (2005) [arXiv:hep-ph/0506176 [hep-ph]].

[66] A. G. Akeroyd, M. Aoki and H. Sugiyama, “Lepton Flavour Violating Decays tau anti-l ll and mu e gamma in the Higgs Triplet Model,” Phys. Rev. D 79,113010 (2009) [arXiv:0904.3640 [hep-ph]].

[67] A. G. Akeroyd and H. Sugiyama, “Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model,” Phys. Rev. D 84, 035010 (2011) [arXiv:1105.2209 [hep-ph]].

[68] M. Aoki, S. Kanemura and K. Yagyu, “Testing the Higgs triplet model with the mass difference at the LHC,” Phys. Rev. D 85, 055007 (2012) [arXiv:1110.4625 [hep-ph]].

[69] A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Phys. Lett. B 93, 389 (1980) [erratum: Phys. Lett. B 95, 461 (1980)]

[70] T. P. Cheng and L. F. Li, “Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions,” Phys. Rev. D 22, 2860 (1980)

[71] A. Zee, “Quantum Numbers of Majorana Neutrino Masses,” Nucl. Phys. B 264, 99-110 (1986)

[72] K. S. Babu, “Model of ’Calculable’ Majorana Neutrino Masses,” Phys. Lett. B 203, 132-136 (1988)

[73] E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73, 077301 (2006) [arXiv:hep-ph/0601225 [hep-ph]].

[74] L. M. Krauss, S. Nasri and M. Trodden, “A Model for neutrino masses and dark matter,” Phys. Rev. D 67, 085002 (2003) [arXiv:hep-ph/0210389 [hep-ph]].

[75] M. Aoki, S. Kanemura and O. Seto, “Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning,” Phys. Rev. Lett. 102, 051805 (2009) [arXiv:0807.0361 [hep-ph]]; “A Model of TeV Scale Physics for Neu- trino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology,” Phys. Rev. D 80, 033007 (2009) [arXiv:0904.3829 [hep-ph]].

[76] M. Gustafsson, J. M. No and M. A. Rivera, “Predictive Model for Radiatively In- duced Neutrino Masses and Mixings with Dark Matter,” Phys. Rev. Lett. 110, no.21, 211802 (2013) [erratum: Phys. Rev. Lett. 112, no.25, 259902 (2014)][arXiv:1212.4806 [hep-ph]]; “Radiative neutrino mass generation linked to neu- trino mixing and 0νββ-decay predictions,” Phys. Rev. D 90, no.1, 013012 (2014) [arXiv:1402.0515 [hep-ph]];

[77] S. M. Davidson and H. E. Logan, “Dirac neutrinos from a second Higgs doublet,” Phys. Rev. D 80, 095008 (2009) [arXiv:0906.3335 [hep-ph]].

[78] S. Nasri and S. Moussa, “Model for small neutrino masses at the TeV scale,” Mod. Phys. Lett. A 17, 771-778 (2002) [arXiv:hep-ph/0106107 [hep-ph]]; S. Kanemura,T. Nabeshima and H. Sugiyama, Phys. Lett. B 703, 66-70 (2011) [arXiv:1106.2480 [hep-ph]].

[79] P. H. Gu and U. Sarkar, “Radiative Neutrino Mass, Dark Matter and Leptogenesis,” Phys. Rev. D 77, 105031 (2008) [arXiv:0712.2933 [hep-ph]].

[80] S. Kanemura, K. Sakurai and H. Sugiyama, “Probing Models of Dirac Neutrino Masses via the Flavor Structure of the Mass Matrix,” Phys. Lett. B 758, 465-472 (2016) [arXiv:1603.08679 [hep-ph]].

[81] S. Kanemura, K. Sakurai and H. Sugiyama, “Neutrino mass without lepton number violation, dark matter; and a strongly first-order phase transition,” Phys. Rev. D 96, no.9, 095024 (2017) [arXiv:1705.07040 [hep-ph]].

[82] K. Enomoto, S. Kanemura, K. Sakurai and H. Sugiyama, “New model for radiatively generated Dirac neutrino masses and lepton flavor violating decays of the Higgs boson,” Phys. Rev. D 100, no.1, 015044 (2019) [arXiv:1904.07039 [hep-ph]].

[83] V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys. Lett. B 161, 136-140 (1985)

[84] J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50, 3637- 3649 (1994) [arXiv:hep-ph/0702143 [hep-ph]].

[85] C. P. Burgess, M. Pospelov and T. ter Veldhuis, “The Minimal model of nonbaryonic dark matter: A Singlet scalar,” Nucl. Phys. B 619, 709-728 (2001) [arXiv:hep- ph/0011335 [hep-ph]].

[86] R. N. Lerner and J. McDonald, “Gauge singlet scalar as inflaton and thermal relic dark matter,” Phys. Rev. D 80, 123507 (2009) [arXiv:0909.0520 [hep-ph]].

[87] S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, “Can WIMP Dark Matter overcome the Nightmare Scenario?,” Phys. Rev. D 82, 055026 (2010) [arXiv:1005.5651 [hep-ph]].

[88] J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, “Update on scalar singlet dark matter,” Phys. Rev. D 88, 055025 (2013) [erratum: Phys. Rev. D 92, no.3, 039906 (2015)] [arXiv:1306.4710 [hep-ph]].

[89] P. Athron et al. [GAMBIT], “Status of the scalar singlet dark matter model,” Eur. Phys. J. C 77, no.8, 568 (2017) [arXiv:1705.07931 [hep-ph]].

[90] N. G. Deshpande and E. Ma, “Pattern of Symmetry Breaking with Two Higgs Doublets,” Phys. Rev. D 18, 2574 (1978)

[91] R. Barbieri, L. J. Hall and V. S. Rychkov, “Improved naturalness with a heavy Higgs: An Alternative road to LHC physics,” Phys. Rev. D 74, 015007 (2006) [arXiv:hep-ph/0603188 [hep-ph]].

[92] L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, “The Inert Dou- blet Model: An Archetype for Dark Matter,” JCAP 02, 028 (2007) [arXiv:hep- ph/0612275 [hep-ph]].

[93] A. Goudelis, B. Herrmann and O. St˚al, “Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC,” JHEP 09, 106 (2013) [arXiv:1303.3010 [hep-ph]].

[94] S. Kanemura, M. Kikuchi and K. Sakurai, “Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings,” Phys. Rev. D 94, no.11, 115011 (2016) [arXiv:1605.08520 [hep-ph]].

[95] M. Cirelli, N. Fornengo and A. Strumia, “Minimal dark matter,” Nucl. Phys. B753, 178-194 (2006) [arXiv:hep-ph/0512090 [hep-ph]].

[96] M. Cirelli, A. Strumia and M. Tamburini, “Cosmology and Astrophysics of Minimal Dark Matter,” Nucl. Phys. B 787, 152-175 (2007) [arXiv:0706.4071 [hep-ph]].

[97] P. Fileviez Perez, H. H. Patel, M. J. Ramsey-Musolf and K. Wang, “Triplet Scalars and Dark Matter at the LHC,” Phys. Rev. D 79, 055024 (2009) [arXiv:0811.3957 [hep-ph]].

[98] A. Pich and P. Tuzon, “Yukawa Alignment in the Two-Higgs-Doublet Model,” Phys. Rev. D 80, 091702 (2009) [arXiv:0908.1554 [hep-ph]].

[99] A. M. Sirunyan et al. [CMS], “Combined measurements of Higgs boson couplings in proton–proton collisions at s = 13 TeV,” Eur. Phys. J. C 79, no.5, 421 (2019) [arXiv:1809.10733 [hep-ex]].

[100] G. Aad et al. [ATLAS], “Combined measurements of Higgs boson production and de- cay using up to 80 fb−1 of proton-proton collision data at s = 13 TeV collected with the ATLAS experiment,” Phys. Rev. D 101, no.1, 012002 (2020) [arXiv:1909.02845 [hep-ex]].

[101] S. Kanemura, M. Kubota and K. Yagyu, “Aligned CP-violating Higgs sector cancel- ing the electric dipole moment,” JHEP 08, 026 (2020) [arXiv:2004.03943 [hep-ph]].

[102] M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai and K. Yagyu, “Prob- ing extended Higgs sectors by the synergy between direct searches at the LHC and precision tests at future lepton colliders,” Nucl. Phys. B 966, 115375 (2021) [arXiv:2010.15057 [hep-ph]].

[103] S. Kanemura, M. Takeuchi and K. Yagyu, “Probing double-aligned two Higgs dou- blet models at LHC,” [arXiv:2112.13679 [hep-ph]].

[104] S. Kanemura, M. Kubota and K. Yagyu, “Testing aligned CP-violating Higgs sector at future lepton colliders,” JHEP 04, 144 (2021) [arXiv:2101.03702 [hep-ph]].

[105] M. Joyce, T. Prokopec and N. Turok, “Electroweak baryogenesis from a classical force,” Phys. Rev. Lett. 75, 1695-1698 (1995) [erratum: Phys. Rev. Lett. 75, 3375(1995)] [arXiv:hep-ph/9408339 [hep-ph]].

[106] M. Joyce, T. Prokopec and N. Turok, “Nonlocal electroweak baryogenesis. Part 1: Thin wall regime,” Phys. Rev. D 53, 2930-2957 (1996) [arXiv:hep-ph/9410281 [hep- ph]]; “Nonlocal electroweak baryogenesis. Part 2: The Classical regime,” Phys. Rev. D 53, 2958-2980 (1996) [arXiv:hep-ph/9410282 [hep-ph]].

[107] J. M. Cline, M. Joyce and K. Kainulainen, “Supersymmetric electroweak baryoge- nesis,” JHEP 07, 018 (2000) [arXiv:hep-ph/0006119 [hep-ph]].

[108] L. Fromme and S. J. Huber, “Top transport in electroweak baryogenesis,” JHEP 03, 049 (2007) [arXiv:hep-ph/0604159 [hep-ph]].

[109] J. M. Cline and K. Kainulainen, “Electroweak baryogenesis at high bubble wall velocities,” Phys. Rev. D 101, no.6, 063525 (2020) [arXiv:2001.00568 [hep-ph]].

[110] M. Aoki, K. Enomoto, S. Kanemura, in preparation.

[111] S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys. 22, 579-588 (1961).

[112] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12, 132-133 (1964); “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13, 508-509 (1964); “Spontaneous Symmetry Breakdown without Mass- less Bosons,” Phys. Rev. 145, 1156-1163 (1966).

[113] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321-323 (1964)

[114] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, “Global Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13, 585-587 (1964)

[115] Y. Nambu, “Quasiparticles and Gauge Invariance in the Theory of Superconductiv- ity,” Phys. Rev. 117, 648-663 (1960)

[116] J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cim. 19, 154-164 (1961)

[117] Y. Nambu and G. Jona-Lasinio, “Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1.,” Phys. Rev. 122, 345-358 (1961); “Dy- namical Model of Elementary Particles Based on an Analogy with Superconductiv- ity. 2.,” Phys. Rev. 124, 246-254 (1961).

[118] J. Goldstone, A. Salam and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127, 965-970 (1962)

[119] H. Watanabe and H. Murayama, “Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance,” Phys. Rev. Lett. 108, 251602 (2012) [arXiv:1203.0609 [hep-th]].

[120] Y. Hidaka, “Counting rule for Nambu-Goldstone modes in nonrelativistic systems,” Phys. Rev. Lett. 110, no.9, 091601 (2013) [arXiv:1203.1494 [hep-th]].

[121] See, for example, S. Weinberg, “Quantum theory of fields II”, Cambridge University Press.

[122] See, for example, R. N. Mohapatra, P. B. Pal, “Massive neutrinos in physics and astrophysics”, World Scientific.

[123] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10, 531- 533 (1963)

[124] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction,” Prog. Theor. Phys. 49, 652-657 (1973)

[125] S. L. Glashow, J. Iliopoulos and L. Maiani, “Weak Interactions with Lepton-Hadron Symmetry,” Phys. Rev. D 2, 1285-1292 (1970)

[126] C. Jarlskog, “A Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and Experiment,” Z. Phys. C 29, 491-497 (1985); “Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Violation,” Phys. Rev. Lett. 55, 1039 (1985).

[127] P. H. Frampton and C. Jarlskog, “Systematics of Quark Mass Matrices in the Stan- dard Electroweak Model,” Phys. Lett. B 154, 421-424 (1985)

[128] A. E. Nelson, D. B. Kaplan and A. G. Cohen, Nucl. Phys. B 373, 453-478 (1992) doi:10.1016/0550-3213(92)90440-M

[129] K. Funakubo, “CP violation and baryogenesis at the electroweak phase transition,” Prog. Theor. Phys. 96, 475-520 (1996) [arXiv:hep-ph/9608358 [hep-ph]].

[130] G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. Lett. 70, 2833-2836 (1993) [erra- tum: Phys. Rev. Lett. 71, 210 (1993)] [arXiv:hep-ph/9305274 [hep-ph]]; Phys. Rev. D 50, 774 (1994) [arXiv:hep-ph/9305275 [hep-ph]].

[131] D. A. Kirzhnits and A. D. Linde, “Macroscopic Consequences of the Weinberg Model,” Phys. Lett. B 42, 471-474 (1972)

[132] L. Dolan and R. Jackiw, “Symmetry Behavior at Finite Temperature,” Phys. Rev. D 9, 3320-3341 (1974)

[133] S. Weinberg, “Gauge and Global Symmetries at High Temperature,” Phys. Rev. D9, 3357-3378 (1974)

[134] M. E. Carrington, “The Effective potential at finite temperature in the Standard Model,” Phys. Rev. D 45, 2933-2944 (1992)

[135] P. Meade and H. Ramani, “Unrestored Electroweak Symmetry,” Phys. Rev. Lett.122, no.4, 041802 (2019) [arXiv:1807.07578 [hep-ph]].

[136] I. Baldes and G. Servant, “High scale electroweak phase transition: baryogenesis\& symmetry non-restoration,” JHEP 10, 053 (2018) [arXiv:1807.08770 [hep-ph]].

[137] M. Carena, C. Krause, Z. Liu and Y. Wang, “New approach to electroweak sym- metry nonrestoration,” Phys. Rev. D 104, no.5, 055016 (2021) [arXiv:2104.00638 [hep-ph]].

[138] W. Chao, H. K. Guo and X. F. Li, “First Order Color Symmetry Break- ing and Restoration Triggered by Electroweak Symmetry Non-restoration,” [arXiv:2112.13580 [hep-ph]].

[139] M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde and D. A. Linde, “Towards the theory of the electroweak phase transition,” Phys. Rev. D 46, 550-571 (1992) [arXiv:hep- ph/9203203 [hep-ph]].

[140] S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. P. Yuan, “New physics effect on the Higgs selfcoupling,” Phys. Lett. B 558, 157-164 (2003) [arXiv:hep- ph/0211308 [hep-ph]].

[141] S. Kanemura, Y. Okada, E. Senaha and C. P. Yuan, “Higgs coupling constants as a probe of new physics,” Phys. Rev. D 70, 115002 (2004) [arXiv:hep-ph/0408364 [hep-ph]].

[142] J. Braathen and S. Kanemura, “On two-loop corrections to the Higgs trilinear cou- pling in models with extended scalar sectors,” Phys. Lett. B 796, 38-46 (2019) [arXiv:1903.05417 [hep-ph]]; “Leading two-loop corrections to the Higgs boson self- couplings in models with extended scalar sectors,” Eur. Phys. J. C 80, no.3, 227 (2020) [arXiv:1911.11507 [hep-ph]].

[143] S. Kanemura, Y. Okada and E. Senaha, “Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling,” Phys. Lett. B 606, 361-366 (2005) [arXiv:hep-ph/0411354 [hep-ph]].

[144] J. M. Cline and K. Kainulainen, “A New source for electroweak baryogenesis in the MSSM,” Phys. Rev. Lett. 85, 5519-5522 (2000) [arXiv:hep-ph/0002272 [hep-ph]].

[145] G. D. Moore, “Sphaleron rate in the symmetric electroweak phase,” Phys. Rev. D62, 085011 (2000) [arXiv:hep-ph/0001216 [hep-ph]].

[146] B. Pontecorvo, “Mesonium and anti-mesonium,” Sov. Phys. JETP 6, 429 (1957); “Inverse beta processes and nonconservation of lepton charge,” Zh. Eksp. Teor. Fiz. 34, 247 (1957); “Neutrino Experiments and the Problem of Conservation of Leptonic Charge,” Zh. Eksp. Teor. Fiz. 53, 1717-1725 (1967).

[147] Z. Maki, M. Nakagawa and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28, 870-880 (1962).

[148] S. M. Bilenky and S. T. Petcov, “Massive Neutrinos and Neutrino Oscillations,” Rev. Mod. Phys. 59, 671 (1987) [erratum: Rev. Mod. Phys. 61, 169 (1989); erratum:Rev. Mod. Phys. 60, 575-575 (1988)].

[149] A. Gando et al. [KamLAND-Zen], “Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen,” Phys. Rev. Lett. 117, no.8, 082503 (2016) [arXiv:1605.02889 [hep-ex]].

[150] P. Sikivie, L. Susskind, M. B. Voloshin and V. I. Zakharov, “Isospin Breaking in Technicolor Models,” Nucl. Phys. B 173, 189-207 (1980)

[151] H. E. Haber and A. Pomarol, “Constraints from global symmetries on radiative corrections to the Higgs sector,” Phys. Lett. B 302, 435-441 (1993) [arXiv:hep- ph/9207267 [hep-ph]].

[152] A. Pomarol and R. Vega, “Constraints on CP violation in the Higgs sector from the rho parameter,” Nucl. Phys. B 413, 3-15 (1994) [arXiv:hep-ph/9305272 [hep-ph]].

[153] J. M. Gerard and M. Herquet, “A Twisted custodial symmetry in the two-Higgs- doublet model,” Phys. Rev. Lett. 98, 251802 (2007) [arXiv:hep-ph/0703051 [hep- ph]].

[154] H. E. Haber and D. O’Neil, “Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U,” Phys. Rev. D 83, 055017 (2011) [arXiv:1011.6188 [hep-ph]].

[155] B. Grzadkowski, M. Maniatis and J. Wudka, “The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model,” JHEP 11, 030 (2011) [arXiv:1011.5228 [hep-ph]].

[156] M. Aiko and S. Kanemura, “New scenario for aligned Higgs couplings originated from the twisted custodial symmetry at high energies,” JHEP 02, 046 (2021) [arXiv:2009.04330 [hep-ph]].

[157] S. Kanemura, T. Kasai, G. L. Lin, Y. Okada, J. J. Tseng and C. P. Yuan, “Phe- nomenology of Higgs bosons in the Zee model,” Phys. Rev. D 64, 053007 (2001) [arXiv:hep-ph/0011357 [hep-ph]].

[158] L. Wolfenstein, “A Theoretical Pattern for Neutrino Oscillations,” Nucl. Phys. B175, 93-96 (1980)

[159] V. D. Barger, J. L. Hewett and R. J. N. Phillips, “New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models,” Phys. Rev. D 41, 3421-3441 (1990)

[160] Y. Grossman, “Phenomenology of models with more than two Higgs doublets,” Nucl. Phys. B 426, 355-384 (1994) [arXiv:hep-ph/9401311 [hep-ph]].

[161] M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, “Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology,” Phys. Rev. D 80, 015017 (2009) [arXiv:0902.4665 [hep-ph]].

[162] K. Cheung and O. Seto, “Phenomenology of TeV right-handed neutrino and the dark matter model,” Phys. Rev. D 69, 113009 (2004) [arXiv:hep-ph/0403003 [hep- ph]].

[163] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helv. Phys. Acta6, 110-127 (1933)

[164] E. Kolb, M. Turner, “The Early Universe”, CRC press.

[165] S. Davidson and H. E. Haber, “Basis-independent methods for the two-Higgs- doublet model,” Phys. Rev. D 72, 035004 (2005) [erratum: Phys. Rev. D 72, 099902(2005)] [arXiv:hep-ph/0504050 [hep-ph]].

[166] A. G. Akeroyd, M. Aoki, A. Arhrib, L. Basso, I. F. Ginzburg, R. Guedes,J. Hernandez-Sanchez, K. Huitu, T. Hurth and M. Kadastik, et al. “Prospects for charged Higgs searches at the LHC,” Eur. Phys. J. C 77, no.5, 276 (2017) [arXiv:1607.01320 [hep-ph]].

[167] A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, “Status of the Charged Higgs Boson in Two Higgs Doublet Models,” Eur. Phys. J. C 78, no.3, 182 (2018) [arXiv:1706.07414 [hep-ph]].

[168] G. Abbiendi et al. [ALEPH, DELPHI, L3, OPAL and LEP], “Search for Charged Higgs bosons: Combined Results Using LEP Data,” Eur. Phys. J. C 73, 2463 (2013) [arXiv:1301.6065 [hep-ex]].

[169] D. de Florian et al. [LHC HiAiggs Cross Section Working Group], “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” [arXiv:1610.07922 [hep-ph]].

[170] A. M. Sirunyan et al. [CMS], “Search for cha√rged Higgs bosons in the H± → τ ±ντdecay channel in proton-proton collisions at s = 13 TeV,” JHEP 07, 142 (2019)[arXiv:1903.04560 [hep-ex]].

[171] G. Aad et al. [ATLAS], “Search for charged Higgs bosons decaying into a top quark and a bottom quark at s = 13 TeV with the ATLAS detector,” JHEP 06, 145 (2021) [arXiv:2102.10076 [hep-ex]].

[172] M. Aaboud et al. [ATLAS], “Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at s = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 78, no.7, 565 (2018) [arXiv:1804.10823 [hep-ex]].

[173] G. Aad et al. [ATLAS], “Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at s = 13 TeV,” Phys. Rev. Lett. 125, no.5, 051801 (2020) [arXiv:2002.12223 [hep-ex]].

[174] T. Enomoto and R. Watanabe, “Flavor constraints on the Two Higgs Doublet Mod- els of Z2 symmetric and aligned types,” JHEP 05, 002 (2016) [arXiv:1511.05066 [hep-ph]].

[175] J. Haller, A. Hoecker, R. Kogler, K. M¨onig, T. Peiffer and J. Stelzer, “Update of the global electroweak fit and constraints on two-Higgs-doublet models,” Eur. Phys.J. C 78, no.8, 675 (2018) [arXiv:1803.01853 [hep-ph]].

[176] V. Khachatryan et al. [CMS and LHCb], “Observation of the rare B0 → µ+µ−decay from the combined analysis of CMS and LHCb data,” Nature 522, 68-72 (2015) [arXiv:1411.4413 [hep-ex]].

[177] R. Aaij et al. [LHCb], “Measurement of the B0 → µ+µ− branching fraction and effective lifetime and search for B0 µ+µ− decays,” Phys. Rev. Lett. 118, no.19,191801 (2017) [arXiv:1703.05747 [hep-ex]].

[178] V. Andreev et al. [ACME], “Improved limit on the electric dipole moment of the electron,” Nature 562, no.7727, 355-360 (2018)

[179] M. Jung and A. Pich, “Electric Dipole Moments in Two-Higgs-Doublet Models,” JHEP 04, 076 (2014) [arXiv:1308.6283 [hep-ph]].

[180] K. Cheung, J. S. Lee, E. Senaha and P. Y. Tseng, “Confronting Higgcision with Electric Dipole Moments,” JHEP 06, 149 (2014) [arXiv:1403.4775 [hep-ph]].

[181] S. M. Barr and A. Zee, “Electric Dipole Moment of the Electron and of the Neutron,” Phys. Rev. Lett. 65, 21-24 (1990) [erratum: Phys. Rev. Lett. 65, 2920 (1990)]

[182] C. Abel et al. [nEDM], “Measurement of the permanent electric dipole moment of the neutron,” Phys. Rev. Lett. 124, no.8, 081803 (2020) [arXiv:2001.11966 [hep-ex]].

[183] M. Pospelov and A. Ritz, “Neutron EDM from electric and chromoelectric dipole moments of quarks,” Phys. Rev. D 63, 073015 (2001) [arXiv:hep-ph/0010037 [hep- ph]].

[184] J. Hisano, J. Y. Lee, N. Nagata and Y. Shimizu, “Reevaluation of Neutron Elec- tric Dipole Moment with QCD Sum Rules,” Phys. Rev. D 85, 114044 (2012) [arXiv:1204.2653 [hep-ph]].

[185] K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, “QCD Corrections to Quark (Chromo)Electric Dipole Moments in High-scale Supersymmetry,” JHEP 12, 010 (2013) [arXiv:1308.6493 [hep-ph]].

[186] T. Abe, J. Hisano, T. Kitahara and K. Tobioka, “Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models,” JHEP 01, 106 (2014) [erratum: JHEP 04, 161 (2016)] [arXiv:1311.4704 [hep-ph]].

[187] S. Weinberg, “Larger Higgs Exchange Terms in the Neutron Electric Dipole Mo- ment,” Phys. Rev. Lett. 63, 2333 (1989)

[188] D. A. Dicus, “Neutron Electric Dipole Moment From Charged Higgs Exchange,” Phys. Rev. D 41, 999 (1990)

[189] V. M. Khatsimovsky, I. B. Khriplovich and A. S. Yelkhovsky, “Neutron Electric Dipole Moment, T Odd Nuclear Forces and Nature of CP Violation,” Annals Phys. 186, 1-14 (1988)

[190] M. E. Peskin and T. Takeuchi, “A New constraint on a strongly interacting Higgs sector,” Phys. Rev. Lett. 65, 964-967 (1990); “Estimation of oblique electroweak corrections,” Phys. Rev. D 46, 381-409 (1992).

[191] S. Kanemura, T. Kubota and E. Takasugi, “Lee-Quigg-Thacker bounds for Higgs bo- son masses in a two doublet model,” Phys. Lett. B 313, 155-160 (1993) [arXiv:hep- ph/9303263 [hep-ph]].

[192] A. G. Akeroyd, A. Arhrib and E. M. Naimi, “Note on tree level unitarity in the general two Higgs doublet model,” Phys. Lett. B 490, 119-124 (2000) [arXiv:hep- ph/0006035 [hep-ph]].

[193] I. F. Ginzburg and I. P. Ivanov, “Tree-level unitarity constraints in the most general 2HDM,” Phys. Rev. D 72, 115010 (2005) [arXiv:hep-ph/0508020 [hep-ph]].

[194] S. Kanemura and K. Yagyu, “Unitarity bound in the most general two Higgs doublet model,” Phys. Lett. B 751, 289-296 (2015) [arXiv:1509.06060 [hep-ph]].

[195] S. Nie and M. Sher, “Vacuum stability bounds in the two Higgs doublet model,” Phys. Lett. B 449, 89-92 (1999) [arXiv:hep-ph/9811234 [hep-ph]].

[196] S. Kanemura, T. Kasai and Y. Okada, “Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model,” Phys. Lett. B 471, 182-190 (1999) [arXiv:hep-ph/9903289 [hep-ph]].

[197] P. M. Ferreira, R. Santos and A. Barroso, “Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation,” Phys. Lett. B 603, 219-229 (2004) [erratum: Phys. Lett. B 629, 114-114 (2005)] [arXiv:hep-ph/0406231 [hep-ph]].

[198] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spon- taneous Symmetry Breaking,” Phys. Rev. D 7, 1888-1910 (1973)

[199] S. Baum, M. Carena, N. R. Shah, C. E. M. Wagner and Y. Wang, “Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM,” JHEP 03, 055 (2021) [arXiv:2009.10743 [hep-ph]].

[200] R. R. Parwani, “Resummation in a hot scalar field theory,” Phys. Rev. D 45, 4695 (1992) [erratum: Phys. Rev. D 48, 5965 (1993)] [arXiv:hep-ph/9204216 [hep-ph]].

[201] L. D. McLerran, E. Mottola and M. E. Shaposhnikov, “Sphalerons and Axion Dy- namics in High Temperature QCD,” Phys. Rev. D 43, 2027-2035 (1991)

[202] G. F. Giudice and M. E. Shaposhnikov, “Strong sphalerons and electroweak baryo- genesis,” Phys. Lett. B 326, 118-124 (1994) [arXiv:hep-ph/9311367 [hep-ph]].

[203] C. L. Wainwright, “CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys. Commun. 183, 2006-2013 (2012) [arXiv:1109.4189 [hep-ph]].

[204] G. D. Moore, “Computing the strong sphaleron rate,” Phys. Lett. B 412, 359-370 (1997) [arXiv:hep-ph/9705248 [hep-ph]].

[205] P. Huet and A. E. Nelson, “Electroweak baryogenesis in supersymmetric models,” Phys. Rev. D 53, 4578-4597 (1996) [arXiv:hep-ph/9506477 [hep-ph]].

[206] J. M. Cline and B. Laurent, “Electroweak baryogenesis from light fermion sources: A critical study,” Phys. Rev. D 104, no.8, 083507 (2021) [arXiv:2108.04249 [hep- ph]].

[207] M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva, R. Abdul Khalek, A. Aboubrahim,J. Alimena, S. Alioli and A. Alves, et al. “Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC,” CERN Yellow Rep. Monogr. 7, 221-584 (2019) [arXiv:1902.00134 [hep-ph]].

[208] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. D. Kim,J. List, M. Nojiri and M. Perelstein, et al. “Physics Case for the International Linear Collider,” [arXiv:1506.05992 [hep-ex]].

[209] P. Bambade, T. Barklow, T. Behnke, M. Berggren, J. Brau, P. Burrows, D. Denisov,A. Faus-Golfe, B. Foster and K. Fujii, et al. “The International Linear Collider: A Global Project,” [arXiv:1903.01629 [hep-ex]].

[210] P. N. Burrows et al. [CLICdp and CLIC], “The Compact Linear Collider (CLIC) - 2018 Summary Report,” [arXiv:1812.06018 [physics.acc-ph]].

[211] J. W. Martin, “Current status of neutron electric dipole moment experiments,” J. Phys. Conf. Ser. 1643, no.1, 012002 (2020)

[212] D. J. H. Chung, B. Garbrecht, M. J. Ramsey-Musolf and S. Tulin, “Lepton-mediated electroweak baryogenesis,” Phys. Rev. D 81, 063506 (2010) [arXiv:0905.4509 [hep- ph]].

[213] J. De Vries, M. Postma and J. van de Vis, “The role of leptons in electroweak baryogenesis,” JHEP 04, 024 (2019) [arXiv:1811.11104 [hep-ph]].

[214] K. P. Xie, “Lepton-mediated electroweak baryogenesis, gravitational waves and the 4τ final state at the collider,” JHEP 02, 090 (2021) [arXiv:2011.04821 [hep-ph]].

[215] K. Enomoto, S. Kanemura and Y. Mura, work in progress.

[216] A. Riotto, “Towards a nonequilibrium quantum field theory approach to electroweak baryogenesis,” Phys. Rev. D 53, 5834-5841 (1996) [arXiv:hep-ph/9510271 [hep- ph]]; “Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations,” Nucl. Phys. B 518, 339-360 (1998) [arXiv:hep- ph/9712221 [hep-ph]].

[217] E. Kou et al. [Belle-II], “The Belle II Physics Book,” PTEP 2019, no.12, 123C01 (2019) [erratum: PTEP 2020, no.2, 029201 (2020)] [arXiv:1808.10567 [hep-ex]].

[218] R. Aaij et al. [LHCb], “Implications of LHCb measurements and future prospects,” Eur. Phys. J. C 73, no.4, 2373 (2013) [arXiv:1208.3355 [hep-ex]].

[219] M. Benzke, S. J. Lee, M. Neubert and G. Paz, “Long-Distance Dominance of the CP Asymmetry in B Xs,d + γ Decays,” Phys. Rev. Lett. 106, 141801 (2011) [arXiv:1012.3167 [hep-ph]].

[220] S. Watanuki et al. [Belle], “Measurements of isospin asymmetry and difference of direct CP asymmetries in inclusive B Xsγ decays,” Phys. Rev. D 99, no.3, 032012 (2019) [arXiv:1807.04236 [hep-ex]].

[221] D. Jeans and G. W. Wilson, “Measuring the CP state of tau lepton pairs from Higgs decay at the ILC,” Phys. Rev. D 98, no.1, 013007 (2018) [arXiv:1804.01241 [hep-ex]].

[222] O. J. P. Eboli, G. C. Marques, S. F. Novaes and A. A. Natale, “TWIN HIGGS BOSON PRODUCTION,” Phys. Lett. B 197, 269-272 (1987)

[223] D. A. Dicus, C. Kao and S. S. D. Willenbrock, “Higgs Boson Pair Production From Gluon Fusion,” Phys. Lett. B 203, 457-461 (1988)

[224] E. W. N. Glover and J. J. van der Bij, “HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION,” Nucl. Phys. B 309, 282-294 (1988)

[225] T. Plehn, M. Spira and P. M. Zerwas, “Pair production of neutral Higgs particles in gluon-gluon collisions,” Nucl. Phys. B 479, 46-64 (1996) [erratum: Nucl. Phys. B 531, 655-655 (1998)] [arXiv:hep-ph/9603205 [hep-ph]].

[226] A. Djouadi, W. Kilian, M. Muhlleitner and P. M. Zerwas, “Production of neutral Higgs boson pairs at LHC,” Eur. Phys. J. C 10, 45-49 (1999) [arXiv:hep-ph/9904287 [hep-ph]].

[227] X. Li and M. B. Voloshin, “Remarks on double Higgs boson production by gluon fusion at threshold,” Phys. Rev. D 89, no.1, 013012 (2014) [arXiv:1311.5156 [hep- ph]].

[228] D. Gon¸calves, T. Han, F. Kling, T. Plehn and M. Takeuchi, “Higgs boson pair production at future hadron colliders: From kinematics to dynamics,” Phys. Rev. D 97, no.11, 113004 (2018) [arXiv:1802.04319 [hep-ph]].

[229] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, “Higgs boson pair production in new physics models at hadron, lepton, and photon colliders,” Phys. Rev. D 82, 115002 (2010) [arXiv:1009.4670 [hep-ph]].

[230] R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, “Gravitational waves from elec- troweak phase transitions,” Nucl. Phys. B 631, 342-368 (2002) [arXiv:gr-qc/0107033 [gr-qc]].

[231] C. Grojean and G. Servant, “Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond,” Phys. Rev. D 75, 043507 (2007) [arXiv:hep- ph/0607107 [hep-ph]].

[232] M. Kakizaki, S. Kanemura and T. Matsui, “Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition,” Phys. Rev. D 92, no.11, 115007 (2015) [arXiv:1509.08394 [hep-ph]].

[233] P. Amaro-Seoane et al. [LISA], “Laser Interferometer Space Antenna,” [arXiv:1702.00786 [astro-ph.IM]].

[234] N. Seto, S. Kawamura and T. Nakamura, “Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space,” Phys. Rev. Lett. 87, 221103 (2001) [arXiv:astro-ph/0108011 [astro-ph]].

[235] V. Corbin and N. J. Cornish, “Detecting the cosmic gravitational wave background with the big bang observer,” Class. Quant. Grav. 23, 2435-2446 (2006) [arXiv:gr- qc/0512039 [gr-qc]].

[236] G. Aad et al. [ATLAS], “Searches for electroweak production of supersymmetric particles with compressed mass spectra in s = 13 TeV pp collisions with the ATLAS detector,” Phys. Rev. D 101, no.5, 052005 (2020) [arXiv:1911.12606 [hep- ex]].

[237] G. Aad et al. [ATLAS], “Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in s = 13 TeV pp collisions using the ATLAS detector,” Eur. Phys. J. C 80, no.2,123 (2020) [arXiv:1908.08215 [hep-ex]].

[238] G. Aad et al. [ATLAS], “Search for direct stau production in events with two hadronic τ -leptons in s = 13 TeV pp collisions with the ATLAS detector,” Phys. Rev. D 101, no.3, 032009 (2020) [arXiv:1911.06660 [hep-ex]].

[239] A. M. Baldini et al. [MEG], “Search for the lepton flavour violating decay µ+ e+γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76, no.8, 434 (2016) [arXiv:1605.05081 [hep-ex]].

[240] B. Aubert et al. [BaBar], “Searches for Lepton Flavor Violation in the Decays tau+- e+- gamma and tau+- mu+- gamma,” Phys. Rev. Lett. 104, 021802 (2010)[arXiv:0908.2381 [hep-ex]].

[241] U. Bellgardt et al. [SINDRUM], “Search for the Decay mu+ e+ e+ e-,” Nucl. Phys. B 299, 1-6 (1988)

[242] K. Hayasaka, K. Inami, Y. Miyazaki, K. Arinstein, V. Aulchenko, T. Aushev,A. M. Bakich, A. Bay, K. Belous and V. Bhardwaj, et al. “Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs,” Phys. Lett. B 687, 139-143 (2010) [arXiv:1001.3221 [hep-ex]].

[243] A. M. Sirunyan et al. [CMS], “Search for lepton flavour violating decays of the Higgs boson to µτ and eτ in proton-proton collisions at s = 13 TeV,” JHEP 06, 001 (2018) [arXiv:1712.07173 [hep-ex]].

[244] V. Khachatryan et al. [CMS], “Search for lepton flavour violating decays of the Higgs boson to eτ and eµ in proton–proton collisions at s = 8 TeV,” Phys. Lett. B 763, 472-500 (2016) [arXiv:1607.03561 [hep-ex]].

[245] W. H. Bertl et al. [SINDRUM II], “A Search for muon to electron conversion in muonic gold,” Eur. Phys. J. C 47, 337-346 (2006)

[246] M. Aoki, S. Kanemura, K. Sakurai and H. Sugiyama, “Testing neutrino mass gener- ation mechanisms from the lepton flavor violating decay of the Higgs boson,” Phys. Lett. B 763, 352-357 (2016) [arXiv:1607.08548 [hep-ph]].

[247] M. Aoki, S. Kanemura and K. Yagyu, “Triviality and vacuum stability bounds in the three-loop neutrino mass model,” Phys. Rev. D 83, 075016 (2011) [arXiv:1102.3412 [hep-ph]].

[248] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B 160, 151-207 (1979)

[249] M. Srednicki, R. Watkins and K. A. Olive, “Calculations of Relic Densities in the Early Universe,” Nucl. Phys. B 310, 693 (1988)

[250] P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis,” Nucl. Phys. B 360, 145-179 (1991)

[251] H. Y. Cheng and C. W. Chiang, “Revisiting Scalar and Pseudoscalar Couplings with Nucleons,” JHEP 07, 009 (2012) [arXiv:1202.1292 [hep-ph]].

[252] E. Aprile et al. [XENON], “Dark Matter Search Results from a One Ton-Year Expo- sure of XENON1T,” Phys. Rev. Lett. 121, no.11, 111302 (2018) [arXiv:1805.12562[astro-ph.CO]].

[253] A. M. Baldini et al. [MEG II], “The design of the MEG II experiment,” Eur. Phys.J. C 78, no.5, 380 (2018) [arXiv:1801.04688 [physics.ins-det]].

[254] A. Blondel, A. Bravar, M. Pohl, S. Bachmann, N. Berger, M. Kiehn, A. Schon- ing, D. Wiedner, B. Windelband and P. Eckert, et al. “Research Proposal for an Experiment to Search for the Decay µ → eee,” [arXiv:1301.6113 [physics.ins-det]].

[255] K. Arndt et al. [Mu3e], “Technical design of the phase I Mu3e experiment,” Nucl. Instrum. Meth. A 1014, 165679 (2021) [arXiv:2009.11690 [physics.ins-det]].

[256] K. Abe et al. [Hyper-Kamiokande], “Hyper-Kamiokande Design Report,” [arXiv:1805.04163 [physics.ins-det]].

[257] D. S. Akerib et al. [LZ], “LUX-ZEPLIN (LZ) Conceptual Design Report,” [arXiv:1509.02910 [physics.ins-det]].

[258] J. Aalbers et al. [DARWIN], “DARWIN: towards the ultimate dark matter detec- tor,” JCAP 11, 017 (2016) [arXiv:1606.07001 [astro-ph.IM]].

[259] J. R. Espinosa, M. Quiros and F. Zwirner, “On the nature of the electroweak phase transition,” Phys. Lett. B 314, 206-216 (1993) [arXiv:hep-ph/9212248 [hep-ph]].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る