リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-Frequency Heating Extraction Method for Sensitive Drug Analysis in Human Nails」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-Frequency Heating Extraction Method for Sensitive Drug Analysis in Human Nails

Takahashi, Fumiki Kobayashi, Masaru Kobayashi Atsushi Kobayashi, Kanya Asamura, Hideki 信州大学 DOI:30544538

2021.12.09

概要

Background: A simple, sensitive, and rapid extraction method based on high-frequency (H-F) heating was developed for drug analysis in human nails.

Methods: A human nail was placed in a glass tube with an extraction solvent (methanol and 0.1% formic acid; 7:3, v/v), and a ferromagnetic alloy (pyrofoil) was wrapped in a spiral around the glass tube. Then, the glass tube was placed in a Curie point pyrolyzer, and a H-F alternating voltage (600 kHz) was applied. The sample and extraction solvent were heated at the Curie temperature for 3 min. Different Curie temperatures were applied by changing the pyrofoil (160 ◦C, 170 ◦C, 220 ◦C, and 255 ◦C).

Results: The caffeine in the nail was effectively and rapidly extracted into the extraction solvent with the pyrofoil at 220 ◦C. The peak area obtained for the caffeine using liquid chromatography mass spectrometry (LC-MS/MS) was five times that of what was obtained after conventional ultrasonic irradiation extraction. Because the extraction uses high-pressure and high-temperature conditions in a test tube, the drugs that were strongly incorporated in nails could be extracted into the solvent. The amount of caffeine extracted was independent of the size of the pieces in the sample.

Conclusions: Therefore, the sensitive determination of target drugs in nails is possible with rapid (20 min, including H-F extraction for 3 min) and simple sample preparation. The developed method was applied to a nail from a patient with hypertension.

参考文献

1. Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, E.M. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018, 23, 262. [CrossRef]

2. Wang, Z.; Lin, H.; Zhu, H.; Yang, N.; Zhou, B.; Wang, C.; Li, P.; Liu, J. Pharmacokinetic and Metabolism Studies of 12-Riboside-Pseudoginsengenin DQ by UPLC-MS/MS and UPLC-QTOF-MSE. Molecules 2018, 23, 2499. [CrossRef] [PubMed]

3. René, B.; Patrick, B.; Jean-Francois, B.; Pierre, D.; Gilles, P.; Éric, G.; Normand, F. New approach for the determination of ortho-phenylphenol exposure by measurement of sulfate and glucuronide conjugates in urine using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 7275–7284.

4. Takahashi, F.; Nitta, S.; Shimizu, R.; Jin, J. Electrochemiluminescence and voltammetry of tris(2,2′-bipyridine)ruthenium (II) with amphetamine-type stimulants as coreactants: An application to the discrimination of methamphetamine. Forensic Toxicol. 2018, 36, 185–191. [CrossRef]

5. Tina, MB.; Franziska, G.; Clarissa, D.V.; Mathias, H.; Markus, R.B.; Thomas, K. Systematic investigations of endogenous cortisol and cortisone in nails by LC-MS/MS and correlation to hair. Anal. Bioanal. Chem. 2018, 410, 4895–4903.

6. Kintz, P.; Spiehler, V.; Negrusz, A. Alternative specimens. In Clarke’s Analytical Forensic Toxicology; Jickells, S., Negrusz, A., Eds.; Pharmaceutical Press: London, UK, 2008; Volume 6, pp. 153–190.

7. Suzuki, O.; Hattori, H.; Asano, M. Detection of methamphetamine and amphetamine in a single human hair by gas chromatography/chemical ionization mass spectrometry. J. Forensic Sci. 1984, 29, 611–617. [CrossRef]

8. Nakahara, Y.; Takahashi, K.; Takeda, Y.; Konuma, K.; Fukui, S.; Tokui, T. Hair analysis for drug-abuse. 2. Hair analysis for monitoring of methamphetamine abuse by isotope-dilution gas-chromatography mass-spectrometry. Forensic Sci. Int. 1990, 46, 243–254. [CrossRef]

9. Zhu, K.Y.; Leung, K.W.; Ting, A.K.; Wong, Z.C.; Ng, W.Y.; Choi, R.C.; Dong, T.T.; Wang, T.; Lau, D.T.; Tsim, K.W. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal. Chem. 2012, 402, 2805–2815. [CrossRef]

10. Phinney, K.W.; Sander, L.C. Liquid chromatographic method for the determination of enantiomeric composition of amphetamine and methamphetamine in hair samples. Anal. Bioanal. Chem. 2004, 378, 144–149. [CrossRef]

11. Wang, H.; Wang, Y. Matrix-assisted laser desorption/ionization mass spectrometric imaging for the rapid segmental analysis of methamphetamine in a single hair using umbelliferone as a matrix. Anal. Chim. Acta. 2017, 975, 42–51. [CrossRef]

12. Miguez-Framil, M.; Moreda-Pineiro, A.; Bermejo-Barrera, P.; Cocho, J.A.; Tabernero, M.J.; Bermejo, A.M. Electrospray ionization tandem mass spectrometry for the simultaneous determination of opiates and cocaine in human hair. Anal. Chim. Acta. 2011, 704, 123–132. [CrossRef] [PubMed]

13. Emidio, E.S.; Prata, V.D.; Dorea, H.S. Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry. Anal. Chim. Acta. 2010, 670, 63–71. [CrossRef] [PubMed]

14. Moriya, F. Alternative Specimens. In Handbook of Practical Analysis of Drugs and Poisons in Human Specimens—Chromatographic Methods; Jiho: Tokyo, Japan, 2002; Volume 1–2, pp. 8–14.

15. Cappelle, D.; Doncker, D.M.; Gys, C.; Krysiak, K.; Keukeleire, D.S.; Maho, W.; Crunelle, C.L.; Dom, G.; Covaci, A.; Van-Nuijs, A.; et al. A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. Anal. Chim. Acta. 2017, 960, 101–109. [CrossRef] [PubMed]

16. Busardo, F.P.; Gottardi, M.; Tini, A.; Mortali, C.; Giorgetti, R.; Pichini, R. Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry Assay for Determination of Endogenous GHB and GHB-Glucuronide in Nails. Molecules 2018, 23, 2686. [CrossRef] [PubMed]

17. Solimini, R.; Minutillo, A.; Kyriakou, C.; Pichini, S.; Pacifici, R.; Busardo, F.P. Nails in Forensic Toxicology: An Update. Curr. Pharm. Des. 2017, 23, 5468–5479. [CrossRef] [PubMed]

18. Palmeri, A.; Pichini, S.; Pacifici, R.; Zuccaro, P.; Lopez, A. Drugs in nails: Physiology, pharmacokinetics and forensic toxicology. Clin. Pharmacokinet. 2000, 38, 95–110. [CrossRef] [PubMed]

19. Simon, W.; Kriemler, P.; Voelimin, J.A.; Steiner, H. Elucidation of the structure of organic compound by thermal fragmentation. J. Gas Chromatogr. 1967, 5, 53–57. [CrossRef]

20. Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier: Amsterdam, the Netherlands, 2011.

21. Michael, N.L. Pyrolysis and GC in Polymer Analysis; Marcel Dekker: New York, NY, USA, 1985.

22. Ludovic, H.; Charlotte, H.; Béatrice, B.; Maria, K.; Rachid, A.; Anne-Laure, C.; Michel, L.; Ika, P.P.; Philippe, S.; Alexandre, D.; et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal. Bioanal. Chem. 2018, 410, 6663–6676.

23. Kurihara, K.; Tsuchiya, F.; Takada, K.; Shoji, T. Pretreatment of analytical samples with high-frequency heating. DIC Tech. Rev. 2001, 7, 21–28.

24. Kurihara, K.; Tanoue, F. Identification of fatty acid composing metal salt of it in resins by alcohol added thermal extraction with high-frequency heating. Bunseki Kagaku 2000, 49, 265–267. [CrossRef]

25. Kurihara, K.; Tanoue, F. Qualitative analysis of a hindered phenol-type antioxidant by alcohol added thermal extraction with high-frequency heater, analyzing with GC/MS. Bunseki Kagaku 2000, 49, 205–208. [CrossRef]

26. Kurihara, K.; Tanoue, F. Identification of polyester resin components by alcohol added thermal extraction with high-frequency heating. Bunseki Kagaku 2000, 49, 269–271. [CrossRef]

27. Nakamura, M.; Tsuchiya, F.; Kurihara, K.; Takahashi, M. Quick molecular weight determination of polyester-polyurethane soft blocks with phenylisocyanate using high-frequency heating technique. Bunseki Kagaku 2007, 56, 237–240. [CrossRef]

28. Takahashi, F.; Masaru, K.; Atsushi, K.; Kanya, K. Development of high-frequency heating extraction for drug analysis of human nails. Jpn. J. Forensic Sci. Tech. 2015, 20, 103–112. [CrossRef]

29. Krumbiegel, F.; Hastedt, M.; Tsokos, M. Nails are a potential alternative matrix to hair for drug analysis in general unknown screenings by liquid-chromatography quadrupole time-of-flight mass spectrometry. Forensic Sci. Med. Path. 2014, 10, 496–503. [CrossRef] [PubMed]

30. Fujii, T.; Takashima, Y.; Takayama, S.; Ito, Y.; Kawasoe, T. Effect of heat treatment of human hair keratin film. Jpn. J. Cosmetic Sci. Soc. 2013, 37, 165–170.

31. Nakamura, A.; Arimoto, M.; Takeuchi, K.; Fujii, T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol. Pharm. Bull. 2002, 25, 569–572. [CrossRef]

32. Wesolowski, M.; Szynkaruk, P. Thermal decomposition of methylxanthines interpretation of the results by PCA. J. Therm. Anal. Cal. 2016, 948, 40–47.

33. Kuwayama, K.; Miyaguchi, H.; Iwata, Y.; Kanamori, T.; Tsujikawa, K.; Yamamuro, T.; Segawa, H.; Inoue, H. Three-step drug extraction from a single sub-millimeter segment of hair and nail to determine the exact day of drug intake. Anal. Chim. Acta. 2016, 948, 40–47. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る