リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidative Dissolution of Cemented Tungsten Carbides in Molten Sodium Carbonate by Addition of Copper(I) Oxide as Oxidizing Agent for Tungsten Recycling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidative Dissolution of Cemented Tungsten Carbides in Molten Sodium Carbonate by Addition of Copper(I) Oxide as Oxidizing Agent for Tungsten Recycling

Yasuda, Kouji Suzuki, Kohei Uehata, Ryotaro Hagiwara, Rika 京都大学 DOI:10.1007/s40831-023-00737-7

2023.09

概要

Due to the monopolized supply of tungsten resource, it is important to efficiently recycle tungsten scrap for use as a secondary resource. The recycling of tungsten from cemented carbide tools by the molten carbonate method was investigated using simulated hard and soft scrap (carbide tool tips and WC powder, respectively). The oxidative dissolution of tungsten was examined in molten Na₂CO₃ under Ar–O₂–CO₂ atmospheres at 1173 K. Based on the immersion potentials of Cu, W, Co, C, and WC–Co, Cu₂O was suggested to work as an oxidizing agent for tungsten dissolution. The oxidative dissolution rate for carbide tool tips with 12.8 mol% Cu₂O addition reached 57 mg h⁻¹ for the reaction time of 2.5 h, equivalent to 0.32 mm h⁻¹. The decrease in the dissolution rate after 2.5 h was attributed to the decrease in the Cu(I) ion concentration in the melt and the inhibition of ion diffusion by the deposited metallic Cu. No violent reaction leading to explosion was observed, even for the oxidative dissolution of fine WC powder with a large surface area. Thus, this method provides significant safety improvements compared to the molten nitrate method.

この論文で使われている画像

参考文献

1. Zeiler B, Bartl A, Schubert WD (2021) Recycling of tungsten:

current share, economic limitations, technologies and future

potential. Int J Refract Met H 98:105546. https://​doi.​org/​10.​

1016/j.​ijrmhm.​2021.​105546

2. Japan Oil, Gas and Metals National Corporation (JOGMEC)

(2021) 11. Tungsten. Material flow of mineral resources 2020.

https://​mric.​jogmec.​go.​jp/​wp-​conte​nt/​uploa​ds/​2021/​06/​mater ​ial_​

flow2​020_W.​pdf. Accessed 23 Feb 2022

3. U.S. Geological Survey (USGS) (2022) Mineral commodity summaries 2022. U.S. Geological Survey, Reston. https://​doi.​org/​10.​

3133/​mcs20​22

4. Bhosale SN, Mookherjee S, Pardeshi RM (1990) Current practices

in tungsten extraction and recovery. High Temp Mater Processes

9:147–162. https://​doi.​org/​10.​1515/​HTMP.​1990.9.​2-4.​147

5. Shemi A, Magumise A, Ndlovu S, Sacks N (2018) Recycling

of tungsten carbide scrap metal: a review of recycling methods

and future prospects. Miner Eng 122:195–205. https://​doi.​org/​10.​

1016/j.​mineng.​2018.​03.​036

1397

6. Hayashi T, Sato F, Sasaya K, Ikegaya A (2016) Industrialization of

tungsten recovering from used cemented carbide tools. SEI Tech

Rev 189:8–14

7. Hayashi T, Sato F, Sasaya K, Ikegaya A (2018) Development of

tungsten recovering technique from used cemented carbide tools.

PLASTOS 1:358–362. https://​doi.​org/​10.​32277/​plast​os.1.​5_​358

8. Joost R, Pirso J, Viljus M, Letunovitš S, Juhani K (2012) Recycling of WC-Co hardmetals by oxidation and carbothermal reduction in combination with reactive sintering. Est J Eng 18:127–139.

https://​doi.​org/​10.​3176/​eng.​2012.2.​03

9. Jung W-G (2014) Recovery of tungsten carbide from hard material

sludge by oxidation and carbothermal reduction process. J Ind Eng

Chem 20:2384–2388. https://​doi.​org/​10.​1016/j.​jiec.​2013.​10.​017

10. Katiyar PK, Randhawa NS (2020) A comprehensive review

on recycling methods for cemented tungsten carbide scraps

highlighting the electrochemical techniques. Int J Refract Met

Hard Mater 90:105251. https://​doi.​org/​10.​1016/j.​ijrmhm.​2020.​

105251

11. Kang H, Li J, Lu J, Wang Q, Wang Y, Ning Z (2021) Study on

the electrochemical mechanism of the comprehensive recovery of

valuable components from spent cemented carbide. Int J Electrochem Sci 16:211252. https://​doi.​org/​10.​20964/​2021.​12.​47

12. Shi X, Yang H, Shao G, Duan X, Wang S (2008) Oxidation of

ultrafine-cemented carbide prepared from nanocrystalline WC–

10Co composite powder. Ceram Int 34:2043–2049. https://​doi.​

org/​10.​1016/j.​ceram​int.​2007.​07.​029

13. Yamamoto Y, Sasaya K, Fudo T, Nakano A, Yamanaka S, Iguchi T, Sato F, Ikegaya A (2010) Process for producing sodium

tungstate, method for collecting tungsten, apparatus for producing sodium tungstate, and process for producing aqueous sodium

tungstate solution. PCT International Patent, WO2010/104009

14. Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Recycling

technique for cemented carbide tools and development of tungsten-saving tools. SEI Tech Rev 181:33–39

15. Oishi T (2017) Tungsten recycling technologies using molten

salts. Kinzoku 87:771–776

16. Oishi T (2022) Recycling of tungsten by molten salt process. In:

Lazou A, Daehn K, Fleuriault C, Gökelma M, Olivetti E, Meskers C (eds) REWAS 2022: developing tomorrow’s technical

cycles, vol I. Springer, Cham, pp 51–58. https://​doi.​org/​10.​1007/​

978-3-​030-​92563-5_7

17. Lohse M (1996) Sodium tungstate preparation process, PCT International Patent, WO96/41768.

18. Yasuda K, Nozaki F, Uehata R, Hagiwara R (2020) Oxidative

dissolution of tungsten metal in N

­ a2CO3 under Ar–O2–CO2 atmosphere. J. Electrochem. Soc. 167:131501. https://​doi.​org/​10.​1149/​

1945-​7111/​abb4ae

19. Appleby AJ, Van Drunen C (1980) Solubilities of oxygen and carbon monoxide in carbonate melts. J Electrochem Soc 127:1655–

1659. https://​doi.​org/​10.​1149/1.​21299​75

20. Taskinen P (1982) Distribution of equilibriums of arsenic, bismuth, copper, lead, and antimony between molten copper and soda

at 1200°C. Scand J Metall 11:150–154

21. Kojo IV, Taskinen P, Lilius K (1984) Thermodynamics of antimony, arsenic and copper in ­Na2CO3-slags at 1473 K. Erzmetall

37:21–26

22. Riveros G, Park YJ, Takeda Y, Yazawa A (1986) Distribution

equilibria of As and Sb between N

­ a2CO3-Na2O-SiO2 melt and

metallic copper. Equilibrium study between sodium-base slag and

metallic copper (3rd report). J Min Metall Inst Jpn 102:415–422.

https://​doi.​org/​10.​2473/​shige​ntoso​zai19​53.​102.​1181_​415

23. Takeda Y, Riveros G, Park YJ, Yazawa A (1986) Phase relation

between molten system of ­Na2CO3-Na2O-SiO2 and metallic copper. Equilibrium study between sodium-base slag and metallic

copper (2nd report). J Min Metall Inst Jpn 102:375–381. https://​

doi.​org/​10.​2473/​shige​ntoso​zai19​53.​102.​1180_​375

13

1398

24. Takeda Y, Yazawa A (1986) Equilibrium between molten copper

and ­Na2O-Cu2O or S

­ iO2-Cu2O slag. Equilibrium study between

sodium-base slag and metallic copper (1st report). J Min Metall

Inst Jpn 102:311–316. https://d​ oi.o​ rg/1​ 0.2​ 473/s​ higen​ tosoz​ ai195​ 3.​

102.​1179_​311

25. Yamauchi C, Ohtsuki K, Fujisawa T, Sakao H (1988) Distribution ratio of antimony between sodium carbonate slag and molten

copper. Trans Jpn Inst Met 29:727–734. https://​doi.​org/​10.​2320/​

mater​trans​1960.​29.​727

26. Yamauchi C, Fujisawa T, Goto S, Fukuyama H (1989) Effect of

partial pressure of ­CO2 on the distribution ratios of Sb and Cu

between ­Na2CO3 slag and molten copper at 1523 K. Mater Trans

JIM 30:175–183. https://​doi.​org/​10.​2320/​mater​trans​1989.​30.​175

27. Fukuyama H (1993) Thermodynamic study on the transfer of

impurity components between sodium carbonate slag and molten

copper. PhD Thesis, Nagoya University.

13

Journal of Sustainable Metallurgy (2023) 9:1390–1398

28. Claes P, Thirion B, Glibert J (1995) Chemical and electrochemical behaviour of copper species in the molten eutectic mixture

­Na2CO3 + ­K2CO3 at 800°C. J Electroanal Chem 389:37–43.

https://​doi.​org/​10.​1016/​0022-​0728(95)​03913-2

29. Coursol P, Pelton AD, Zamalloa M (2003) Phase equilibria and

thermodynamic properties of the ­Cu2O-CaO-Na2O system in equilibrium with copper. Metall Mater Trans B 34:631–638. https://​

doi.​org/​10.​1007/​s11663-​003-​0033-x

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る