リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quartz crystal microbalance for real-time monitoring chlorosilane gas transport in slim vertical cold wall chemical vapor deposition reactor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quartz crystal microbalance for real-time monitoring chlorosilane gas transport in slim vertical cold wall chemical vapor deposition reactor

Takahashi Toshinori Otani Mana Muroi Mitsuko Irikura Kenta Matsuo Miya Yamada Ayami Habuka Hitoshi 40323927 Ishida Yuuki Ikeda Shin-Ichi 10344201 Hara Shiro 60218617 横浜国立大学

2020.02

概要

Chlorosilane gas transport in ambient hydrogen in a slim vertical cold wall chemical vapor deposition reactor was real-time monitored using a quartz crystal microbalance (QCM) using its behaviour responding to the properties of the gas mixture. The QCM frequency quickly decreased by introducing the trichlorosilane gas, while it slowly decreased by the dichlorosilane gas. The QCM frequency behavior was explained by the gas flow condition, such as the plug flow and recirculating flow, in the reactor. The relationship was consistent with the gas flow calculations, because the heavy and light gases could directly flow downward and recirculate, respectively, in the chamber due to natural convection. The information obtained from the QCM frequency behavior is expected to be utilized for the real-time gas monitoring and for the process design.

参考文献

[1] A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov and G. Eres, In Situ Measurements and

Modeling of Carbon Nanotube Array Growth Kinetics During Chemical Vapor Deposition,

Applied Physics A, 81 (2), 223–240 (2005).

[2] S. Nakamura, In Situ Monitoring of GaN Growth Using Interference Effects, Jap. J. Appl.

Phys., 30 (8), 1620-1628 (1971).

[3] L. L. Tedder and G. W. Rubloff, Real‐Time Process and Product Diagnostics in Rapid

Thermal Chemical Vapor Deposition Using In Situ Mass Spectrometric Sampling, J. Vac. Sci.

Technol. B, 13, 1924 (1995).

[4] H. Habuka, Y. Aoyama, S. Akiyama, T. Otsuka, W. F. Qu, M. Shimada and K. Okuyama,

Chemical Process of Silicon Epitaxial Growth in a SiHCl3-H2 System, J. Crystal Growth,

207(1), 77-86 (1999).

[5] F. G. Celii, Direct Monitoring of CH3 in a Filament‐Assisted Diamond Chemical Vapor

Deposition Reactor, J. Appl. Phys., 71, 2877 (1992).

[6] H. Fujiwara. and M. Kondo, Real-Time Monitoring and Process Control in

Amorphous∕Crystalline Silicon Heterojunction Solar Cells by Spectroscopic Ellipsometry and

Infrared Spectroscopy, Appl. Phys. Lett. 86, 032112 (2005).

[7] L. Atzori, A. Iera and G. Morabito, The Internet of Things: A survey, Computer Networks, 54

(15),

2787-2805 (2010).

[8] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, Internet of Things (IoT): A Vision,

Architectural Elements, and Future Directions, Future Generation Computer Systems, 29 (7),

13

1645-1660 (2013).

[9] S. Khumpuang, S. Maekawa, and S. Hara, Photolithography for Minimal Fab System, IEEJ

Trans. Sensors and Micromachines,133, 272-277 (2013).

[10] S. Khumpuang, F. Imura and S. Hara, Analyses on Cleanroom-Free Performance and

Transistor Manufacturing Cycle Time of Minimal Fab, IEEE Trans. Semicond. Manufac., 28

(4), 551-556 (2015).

[11] N. Li, H. Habuka, S. Ikeda and S. Hara, Silicon Chemical Vapor Deposition Process Using a

Half-Inch Silicon Wafer for Minimal Manufacturing System, Physics Procedia, 46, 230-238

(2013).

[12] N. Li , H. Habuka, Y. Ishida , S. Ikeda and S. Hara, Reflector Influence on Rapid Heating of

Minimal Manufacturing Chemical Vapor Deposition Reactor, ECS J. Solid State Sci. Technol.,

5 (5), P280-P284 (2016).

[13] A. Yamada, N. Li, M. Matsuo, M. Muroi, H. Habuka, Y. Ishida, S. Ikeda and S. Hara,

Transport Phenomena in a Slim Vertical Atmospheric Pressure Chemical Vapor Deposition

Reactor Utilizing Natural Convection, Mater. Sci. Semicond. Processing, 71, 348-351 (2017).

[14] K. Miyazaki, A. Saito and H. Habuka, In Situ Measurement for Evaluating Temperature

Change Related to Silicon Film Formation in a SiHCl3-H2 System, ECS J Solid State Sci.

Technol., 5 (2), P16-P20 (2016).

[15] H. Habuka and M. Matsui, Langasite Crystal Microbalance Frequency Behavior over Wide

Gas Phase Conditions for Chemical Vapor Deposition, Surf. Coat. Technol., 230, 312-315

(2013).

14

[16] H. Habuka and Y. Tanaka, In-Situ Monitoring of Chemical Vapor Deposition from

Trichlorosilane Gas and Monomethylsilane Gas Using Langasite Crystal Microbalance, J.

Surface Eng. Materi. Adv. Technol.,3, 61-66 (2013).

[17] H. Habuka and Y. Tanaka, Langasite Crystal Microbalance Used for In-Situ Monitoring of

Amorphous Silicon Carbide Film Deposition, ECS J. Solid State Sci. Technol., 1(2), 62-65

(2012).

[18] M. Muroi, M. Matsuo, H. Habuka, Y.Ishida, S. Ikeda and S. Hara, Real Time Evaluation of

Silicon Epitaxial Growth Process by Exhaust Gas Measurement Using Quartz Crystal

Microbalance, Materi. Sci. Semicond. Process., 88, 192-197 (2018).

[19] K. Irikura, M. Muroi, A. Yamada, M. Matsuo, H. Habuka, Y. Ishida, S. Ikeda and S. Hara,

Advantages of a Slim Vertical Gas Channel at High SiHCl3 Concentrations for Atmospheric

Pressure Silicon Epitaxial Growth, Mater. Sci. Semicond. Process., 87, 13-18 (2018).

[20] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd Ed. John Wiley

and Sons (2007).

15

Figure captions

Figure 1 Chemical vapor deposition reactor having the QCM sensor as a real-time monitoring

system. (a) the reactor and (b) the QCM box.

Figure 2 Silicon epitaxial growth consisting of two separated processes, i.e., wafer surface

cleaning and silicon epitaxial growth.

Figure 3 QCM frequency behavior influenced by gas ambient and deposition on surface.

Figure 4 Quartz crystal microbalance frequency behavior measured when the 10 % SiH2Cl2 gas

arrived at the QCM box set at the inlet.

Figure 5 Quartz crystal microbalance frequency behavior measured at the exhaust of the reactor

during silicon epitaxial film deposition using SiHCl3 and SiH2Cl2.

Figure 6 Gas motions at the MWave values of (a) 8.7, (b) 15.3 and (c) 28.7.

Figure 7 Contour diagram of gas phase temperature at the MWave values of (a) 8.7, (b) 15.3 and

(c) 28.7.

Figure 8 Schematic of gas flow in vertical cold wall reactor.

(I) Heavy gas mixture and (II)

light gas mixture. Hatched region: chlorosilane gas position. (a), (b), (c) and (d):

chlorosilane gas advance, and (e): QCM frequency behaviour.

16

H2

SiH2Cl2

SiHCl3

QCM Box

Quartz tube

Inlet

QCM

(b) QCM Box (RT)

Wafer

(a) Reactor

Computer

Controller

Exhaust

QCM Box

Figure 1

Epitaxial growth

RT

Remove SiO2

Temperature

H2

SiH2Cl2

SiHCl3

C D

Time

Figure 2

Gas ambient

H2

SiH2Cl2, SiHCl3

1.3

∆f ∝ (ρ µ ) (gas)

Mix

Mix

Time

Figure 3

Frequency change (Hz)

20

SiH2Cl2 arrival

at inlet QCM

-20

-40

50

Time (s)

100

Figure 4

Total 100-106 sccm, 0.7 µm/min

SiH2Cl2 10%

-500

-1000

-1500

SiH2Cl2 20%

Arriving at QCM

Frequency change ∆f (Hz)

Byproduct deposition

SiHCl3 20%

100

200

Time, t (s)

300

Figure 5

Inlet

Inlet

Inlet

0.4

0.3

0.2

Wafer

(b) 15.3

SiH2Cl2 20 %: 21.8

Wafer

(a) 8.7

SiH2Cl2 10 %: 11.9

0.1

Wafer

(c) 28.7

(SiHCl3 20%)

Figure 6

Velocity (m/s)

1000 oC, 4 rpm, Vz=0.004 m/s

1000 oC, 4 rpm, Vz=0.004 m/s

Inlet

Inlet

1000

Wafer

(b) 15.3

SiH2Cl2 20 %: 21.8

Wafer

(a) 8.7

SiH2Cl2 10 %: 11.9

800

600

400

200

27

Wafer

(c) 28.7

(SiHCl3 20%)

Figure 7

Temperature (oC)

Inlet

(I)

Time

(a)

(b)

(c)

(d)

(e)

(II)

Time

(a)

(b)

(c)

(d)

(e)

Figure

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る