リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MEMS hydrogen gas sensor with wireless quartz crystal resonator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MEMS hydrogen gas sensor with wireless quartz crystal resonator

Zhou, Lianjie 大阪大学

2021.02.16

概要

A highly sensitive hydrogen-gas sensor fabricated using MEMS technology is presented. The sensor chip consists of glass substrates, silicon substrate, and an AT-cut quartz crystal resonator, which is embedded in the microchannel constructed on the substrates. The quartz resonator has a fundamental resonant frequency of 165 MHz and a 200 nm palladium film deposited on its single surface as the hydrogen-gas sensing material. The MEMS hydrogen-gas sensor operates in a wireless manner by exciting and detecting the resonator vibration using the non-contacting antennas. The curvature induced resonant frequency change of the resonator plate caused by the expansion of the palladium film is used for the detection of the hydrogen gas. We succeeded in improving the hydrogen absorption rate and then the sensitivity for the hydrogen-gas detection by applying the air-plasma treatment method, and clarified the role of palladium oxide in lowering the energy barrier for the hydrogen-atom migration from surface to subsurface with the X-ray photoelectron spectroscopy. Thus sensitivity enhanced MEMS hydrogen-gas sensor exhibits a detection limit of 10 ppm or less at room temperature both in nitrogen and air.

参考文献

[1] I. Constantinoiu, C. Viespe, Development of Pd/TiO2 Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H2 Gas Sensor, Nanomaterials 10 (2020) 760.

[2] T. Tsuji, R. Mihara, T. Saito, S. Hagihara, T. Oizumi, N. Takeda, T. Ohgi, T. Yanagisawa, S. Akao, N. Nakaso, K. Yamanaka, Highly Sensitive Ball Surface Acoustic Wave Hydrogen Sensor with Porous Pd-Alloy Film, Mater. Trans. 55 (2014) 1040-1044.

[3] Y.N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, Y. Zhao, Recent ad- vancements in optical fiber hydrogen sensors, Sens. Actuat. B 244 (2017) 393-416.

[4] E. Lee, I. Hwang, J. Cha, H. Lee, W. Lee, J. Pak, J. Lee, B. Ju, Micro- machined catalytic combustible hydrogen-gas sensors, Sens. Actuat. B 153 (2011) 392-397.

[5] G. Korotcenkov, S. D. Han, J. R. Stetter, Review of electrochemical hydrogen sensors, Chem. Rev. 109 (2009) 1402-1433.

[6] L. Zhang, H. Jiang, J. Zhang, Y. Huang, J. Tian, X. Deng, X. Zhao, W. Zhang, Flexible nanofiber sensor for low-concentration hydrogen detection, Nanotechnology 31 (2019) 015504.

[7] N. Nakamura, T. Ueno, H. Ogi, Hydrogen-gas sensing at low concen- trations using extremely narrow gap palladium nanoclusters prepared by resistive spectroscopy, J. Appl. Phys. 126 (2019) 225104.

[8] M. Zhao, M. H. Wong, and C. W. Ong, Achievement of controlled resistive response of nanogapped palladium film to hydrogen, Appl. Phys. Lett. 107 (2015) 033108.

[9] C. McConnell, S. N. Kanakaraj, J. Dugre, R. Malik, G. Zhang, M. R. Haase, Y.-Y. Hsieh, Y. Fang, D. Mast, V. Shanov, Hydrogen Sensors Based on Flexible Carbon Nanotube-Palladium Composite Sheets Inte- grated with Ripstop Fabric, ACS Omega 5 (2020) 487-497.

[10] Z. Han, J. Ren, J. Zhou, S. Zhang, Z. Zhang, L.Yang, C. Yin, Multi- layer porous Pd-WO3 composite thin films prepared by sol-gel process for hydrogen sensing, Int. J. Hydrog. Energy 45(2020) 7223-7233.

[11] N. Nakamura, T. Ueno, H. Ogi, Precise control of hydrogen response of semicontinuous palladium film using piezoelectric resonance method, Appl. Phys. Lett. 114 (2019) 201901.

[12] K. Yamanaka, N. Nakaso, D. Sim, T. Fukiura, Principle and application of ball surface acoustic wave (SAW) sensor, Acoust. Sci. Technol. 30 (2009) 2-6.

[13] T. Yanagisawa, T. Ohgi, S. Akao, N. Nakaso, Y. Tsukahara, Y. Ohara, T. Tsuji, K. Yamanaka, Meandering collimated beam of surface acoustic waves on a trigonal crystal ball, Appl. Phys. Lett. 98 (2011) 123508.

[14] J. Kim, A. Mirzaei, H. W. Kim, P. Wu, S. S. Kim, Design of super- sensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation, Sens. Actuat. B 293 (2019) 210-223.

[15] F. Rascha, V. Posticab, F. Schu¨tta, Y. K. Mishra, A. S. Nia, M. R. Lohe, X. Feng, R. Adelung, O. Lupan, Highly selective and ultra-low power consumption metal oxide based hydrogen-gas sensor employing graphene oxide as molecular sieve, Sens. Actuat. B 320 (2020) 128363.

[16] A. Ghosh, C. Zhang, S. Ju, H. Zhang, Selective H2 sensing using lan- thanum doped zinc oxide thin film: A study of temperature dependence H2 sensing effect on carrier reversal activity, J. Appl. Phys. 128 (2020) 094504.

[17] T. Hyodo, H. Shibata, Y. Shimizu, M. Egashira, H2 sensing properties of diode-type gas sensors fabricated with Ti- and/or Nb-based materials, Sens. Actuat. B 142 (2009) 97-104.

[18] T. Hamaguchi, N. Yabuki, M. Uno, S. Yamanaka, M. Egashira, Y. Shimizu, T. Hyodo, Synthesis and H2 gas sensing properties of tin ox- ide nanotube arrays with various electrodes, Sens. Actuat. B 113 (2006) 852-856.

[19] V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, Int. J. Hydrogen Energy 32 (2007) 1145-1158.

[20] W. J. Buttner, M. B. Post, R. Burgess, C. Rivkin, An overview of hy- drogen safety sensors and requirements, Int. J. Hydrog. Energy 36 (2011) 2462-2470.

[21] L. Zhou, N. Nakamura, A. Nagakubo, H. Ogi, Highly sensitive hydro- gen detection using curvature change of wireless-electrodeless quartz res- onators, Appl. Phys. Lett. 115 (2019) 171901.

[22] L. Zhou, N. Nakamura, A. Nagakubo, H. Ogi, Enhancement of sen- sitivity of Pd-based hydrogen-gas sensor by plasma exposure studied by wireless quartz resonator, Jpn. J. Appl. Phys. 59 (2020) SKKB02.

[23] R. J. Behm, V. Penka, M.-G. Cattania, K. Christmann, G. Ertl, Ev- idence for “subsurface” hydrogen on Pd(110): An intermediate between chemisorbed and dissolved species, J. Chem. Phys. 78 (1983) 7486-7490.

[24] H. Okuyama, W. Siga, N. Takagi, M. Nishijima, T. Aruga, Path and mechanism of hydrogen absorption at Pd(100), Surf. Sci. 401 (1998) 344- 354.

[25] K.H. Rieder, M. Baumberger, W. Stocker, Selective Transition of Chemisorbed Hydrogen to Subsurface Sites on Pd(110), Phys. Rev. Lett. 51 (1983) 1799-1802.

[26] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study, Surf. Sci. 606 (2012) 679-689.

[27] T.L. Ward, T. Dao, Model of hydrogen permeation behavior in palla- dium membranes, J. Membr. Sci. 153 (1999) 211–231.

[28] Y. Fukai, H. Sugimoto, Diffusion of hydrogen in metals, Adv. Phys. 34 (1985) 263-326.

[29] S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, E. Kikuchi, Sep- aration of hydrogen through palladium thin film supported on a porous glass tube, J. Membr. Sci. 56 (1991) 303-313.

[30] R. C. Hurlbert, J. O. Konecny, Diffusion of Hydrogen through Palla- dium, J. Chem. Phys. 34 (1961) 655-658.

[31] F. Kato, H. Ogi, T. Yanagida, S. Nishikawa, M. Hirao, M. Nishiyama, Resonance acoustic microbalance with naked-embedded quartz (RAMNE-Q) biosensor fabricated by microelectromechanical-system pro- cess, Biosens. Bioelectron. 33 (2012) 139-145.

[32] F. Kato, H. Noguchi, Y. Kodaka, N. Oshida, H. Ogi, Wireless poly(dimethylsiloxane) quartz-crystal-microbalance biosensor chip fabri- cated by nanoimprint lithography for micropump integration aiming at application in lab-on-a-chip, Jpn. J. Appl. Phys. 57 (2018) 07LD14.

[33] U. Schmidt, Molecular hydrogen in the atmosphere, Tellus 26 (1974) 78.

[34] R. Bechmann, Frequency-temperature-angle characteristics of AT-type resonators made of natural and synthetic quartz, Proceedings of the IRE 44 (1956) 1600.

[35] J.E. Lennard-Jones, Processes of adsorption and diffusion on solid sur- faces, Trans. Faraday Soc. 28 (1932) 333-359.

[36] A.I. Titkov, A.N. Salanov, S.V. Koscheev, A.I. Boronin, Mechanisms of Pd(110) surface reconstruction and oxidation: XPS, LEED and TDS study, Surf. Sci. 600 (2006) 4119-4125.

[37] F.P. Leisenberger, G. Koller, M. Sock, S. Surnev, M.G. Ramsey, F.P. Netzer, B. Kl¨otzer, K. Hayek, Surface and subsurface oxygen on Pd(111), Surf. Sci. 445 (2000) 380-393.

[38] D. Zemlyanov, B. Aszalos-Kiss, E. Kleimenov, D. Teschner, S. Zafeiratos, M. Ha¨vecker, A. Knop-Gericke, R. Schl¨ogl, H. Gabasch, W. Unterberger, K. Hayek, B. Kl¨otzer, In situ XPS study of Pd(1 1 1) oxida- tion. Part 1: 2D oxide formation in 10−3 mbar O2, Surf. Sci. 600 (2006) 983-994.

[39] E. Lundgren, G. Kresse, C. Klein, M. Borg, J.N. Andersen, M. De Santis, Y. Gauthier, C. Konvicka, M. Schmid, P. Varga, Two-dimensional oxide on Pd(111), Phys. Rev. Lett. 88 (2002) 246103-1.

[40] L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen, Appl. Surf. Sci. 255 (2009) 9248-9254.

[41] M. Brun, A. Berthet, J.C. Bertolini, XPS, AES and Auger parameter of Pd and PdO, J. Electron Spectros. Relat. Phenom. 104 (1999) 55-60.

[42] H. Uchikawa, T. Okazaki, K. Sato, New Technique of Activating Pal- ladium Surface for Absorption of Hydrogen or Deuterium, Jpn. J. Appl. Phys. 32 (1993) 5095-5096.

[43] D. Wang, J.D. Clewley, T.B. Flanagan, B. Balasubramaniam, K.L. Shanahan, Enhanced rates of hydrogen adsorption resulting from oxida- tion of Pd or internal oxidation of Pd-Al alloys, J. Alloys Compd. 298 (2000) 261-273.

[44] K. Zhang, S.K. Gade, Ø. Hatlevik, J.D. Way, A sorption rate hypothesis for the increase in H2 permeability of palladium-silver (Pd-Ag) membranes caused by air oxidation, Int. J. Hydrog. Energy 37 (2012) 583-593.

[45] N. Vicinanza, I.-H. Svenum, T. Peters, R. Bredesen, H. Venvik, New insight to the effects of heat treatment in air on the permeation properties of thin Pd77% Ag23% membranes, Membranes 8 (2018) 92.

[46] A.L. Mejdell, H. Klette, A. Ramachandran, A. Borg, R. Bredesen, Hy- drogen permeation of thin, free-standing Pd/Ag 23% membranes before and after heat treatment in air, J. Membr. Sci. 307 (2008) 96-104.

[47] T.S. Liang, H.F. Kang, W. Zhong, H.T. Bian, J. Zhao, Impact of surface adsorbed gases on hydrogen diffusion into Pd(100) subsurface from first principles, Appl. Surf. Sci. 473 (2019) 476–485.

[48] H.T. Bian, H.F. Kang, W. Zhong, J. Zhao, T.S. Liang, Hydrogen diffu- sion into Pd(100) subsurface: Role of co-adsorbed bicomponent species on surface, Appl. Surf. Sci. 533 (2020) 147448.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る