リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「頚椎長範囲後方固定術におけるスクリューのゆるみ・折損に関する検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

頚椎長範囲後方固定術におけるスクリューのゆるみ・折損に関する検討

長島, 克弥 筑波大学 DOI:10.15068/00160569

2020.07.27

概要

頚椎後方固定術におけるスクリューのゆるみや折損に関して、これまでその特徴に関する報告はない。実際に頚椎後方固定術を行った際にどの程度の頻度でスクリューのゆるみが発生するかその特徴を後ろ向きに検証した。頚椎後方固定術を行い、固定頭側端が第2頚椎(C2)または第3頚椎(C3)、尾側端が第7頚椎(C7)または第1胸椎(T1)で、術後6ヵ月以上経過観察可能だった51例(男性40例、女性11例、手術時平均年齢61.7±13.0歳)を対象とし、単純X線写真およびCTにてスクリュー周囲に1mm以上の幅の放射線透亮像を認めるものをゆるみと定義して評価した。その結果、固定頭側端がC2の場合、56本の椎弓根スクリューのうち6本(10.7%)のスクリューでゆるみが生じた。固定尾側端が第7頚椎の場合、第7頚椎に挿入された椎弓根スクリュー101本のうち、16本(15.8%)でゆるみ、5本(5.0%)で折損が生じ、第1胸椎が尾側端の場合、第1胸椎に挿入された椎弓根スクリュー46本のうち、17本(37.0%)でゆるみ、1本(2.2%)で折損が生じた。第7頚椎が固定の最尾側端の場合、第6頚椎にスクリューが両側とも挿入されていないときには第7頚椎の椎弓根スクリュー30本中12本(40%)、第6頚椎の左右どちらかにスクリューが挿入されている場合は第7頚椎の椎弓根スクリュー18本中6本(33.3%)でインプラント障害が生じたが、スクリュー(椎弓根スクリューもしくは外側塊スクリュー)が第6頚椎の両側に挿入されている場合は第7頚椎のスクリュー12本中にインプラント障害は発生しなかった(p<0.05)。以上より特に固定尾側端では高率にスクリューのゆるみや折損が生じることがわかり、尾側端のスクリューのゆるみに対する対策が必要と考えられた。第6頚椎にスクリューを挿入することで、第7頚椎のスクリューに対する応力集中を分散させることができ、第7頚椎のスクリューのゆるみや折損を防ぐことができると考えられた。

 また、我々は産業技術総合研究所との共同研究で線維芽細胞増殖因子(FGF-2)とハイドロキシアパタイトの層を共沈担持法でチタンインプラントの表面にコーティングした線維芽細胞増殖因子担持ハイドロキシアパタイトコーティングインプラントを開発している。FGF-2の生物学的活性により軟部組織再生能、骨形成能、血管新生能などを有しておりスクリューと骨との固着を強化することによりゆるみを予防することを期待し、椎弓根スクリューに応用した。本研究の結果も踏まえて現在、ヒトを対象とし頚椎後方固定術で用いるインプラントにAp-FGFコーティングスクリューを固定最尾側端に用いる第1相臨床研究のプロトコールを作成し、倫理委員会での承認後に開始している。

この論文で使われている画像

参考文献

1. Roy-Cammille R., et al., Internal fixation of the Lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986 Feb;(203):7-17.

2. Imajo,Y., et al., Japanese 2011 nationwide survey on complications from spine surgery. J Orthop Sci. (2015) 20:38–54.

3. Galbusera F., et al., Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015 24:1005-1016.

4. 国立社会保障・人口問題研究所. 人口問題研究資料第 336 号. 平成 29 年 7 月31 日, p4, ISSN 1347-5428

5. Ohtori,S., et al., Comparison of Teriparatide and Bisphosphonate Treatment to Reduce Pedicle Screw Loosening After Lumbar Spinal Fusion Surgery in Postmenopausal Women With Osteoporosis From a Bone Quality Perspective. SPINE. 2013. 38 (8): 487-492.

6. Chin DK., et al. Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 2007; 18: 1219–24.

7. Abumi K., et al. Correction of cervical kyphosis using pedicle screw fixation systems. Spine.1999;24:2389-96

8. Coe JD., et al., Lateral Mass Screw Fixation in the Cervical Spine. A Systematic Literature Review, J Bone Joint Surg Am. 2013; 95: 2136-43.

9. Wright NM., Posterior C2 fixation using bilateral, crossing C2 laminar screws: case series and technical note. J Spinal Disord Tech 2004; 17: 158-162

10. Wu ZX., et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg 2012; 132:471–476

11. Yamazaki M., et al A. Anomalous vertebral artery at the extraosseous and intraosseous regions of the craniovertebral junction: analysis by three-dimensional computed tomography angiography. Spine 2005; 30: 2452–7.

12. Kanda Y., Intervention of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013; 48(3):452-458

13. Fleiss JL., Measuring nominal scale agreement among many raters. Psychol Bull 1971;76(5):378–82

14. Cho KJ,. et al. Short fusion versus long fusion for degenerative lumbar scoliosis. Eur Spine J 2008; 17: 650–6.

15. Koerner John D., et al. Revision surgery for failed cervical spine reconstruction: review article. HSSJ 2015;11:2–8.

16. Yoshihara H., et al. Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws: a systematic review. J Neurosurg Spine 2013; 19:614–23.

17. Shea TM., et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. Biomed Res Int. 2014;Article ID 748393.

18. El Saman A., et al. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013;39(5):455-60.

19. 成島尚之. 骨適合性向上を目的としたチタン材料の表面処理. 軽金属 2008;58(11):577-82.

20. Niu S., et al. The inhibitory effect of alendronate-hydroxyapatite composite coating on wear debris-induced peri-implant high bone turnover. J Surg Res. 2013 Jan;179(1):e107-15. doi: 10.1016/j.jss.2012.02.003.

21. Li Y., et al. In vivo study of pedicle screw augmentation using bioactive glass in osteoporosis sheep. J Spinal Disord Tech. 2013;26(4):E118-23. doi: 10.1097/BSD.0b013e31827695e2.

22. Moroni A., et al. A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external-fixation pins. An in vivo study in sheep. J Bone Joint Surg Am. 1998;80(4):547–54.

23. Moroni A., et al. Improvement of the bone- pin interface strength in osteoporotic bone with use of hydroxyapatite-coated tapered external-fixation pins. A prospective, randomized clinical study of wrist fractures. J Bone Joint Surg Am. 2001;83-A(5):717–21.

24. Moroni A., et al. Enhanced fixation with hydroxyapatite coated pins. Clin Orthop Relat Res. 1998;346:171-7.

25. Moroni A., et al. A biomechanical and histological analysis of standard versus hydroxyapatite-coated pins for external fixation. J Biomed Mater Res B Appl Biomater. 2008;86(2):417-21.

26. 稲垣雅彦ら. 小特集・医療バイオ分野へのプラズマ応用・2. プラズマバイオマテリアルコーティング. J Plasma Fusion Res 2007;7:595-600.

27. Hasegawa T., et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005;5:239–43.

28. Surmenev RA., et al. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review. Acta Biomater. 2014;10:557–79.

29. 吉成正雄. インプラント材料とその表面. その 3. インプラント表面と生体. 歯科学報 2003;103(7):565-72.

30. 吉成正雄. インプラント材料とその表面. その 4. これからのインプラント. 歯科学報 2003;103(8):637-49.

31. Armelin HA., Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci USA. 1973;70(9):2702–6.

32. 中島新ら. 骨折骨癒合研究の最近の進歩 ―分子細胞生物学の視点からー. 千葉医学、2010;86:83-91

33. Nakamura, Y., et al., Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone, 2005. 36(3): p. 399-407.

34. Kawaguchi, H., et al., Local application of recombinant human fibroblast growth factor-2 on bone repair: a dose-escalation prospective trial on patients with osteotomy. J Orthop Res, 2007. 25(4): p. 480-7.

35. Tanaka E., et al., Mechanism of Acceleration of Wound Healing by Basic Fibroblast Growth Factor in Genetically Diabetic Mice. Biol. Pharm. Bull., 1996. 19(9): p. 1141-1148.

36. Wu, M., et al., TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016. 4: p. 16009.

37. Fromigué, O., et al., Growth Factors and Bone Formation in Osteoporosis: Roles for Fibroblast Growth Factor and Transforming Growth Factor Beta. Current Pharmaceutical Design, 2004. 10(21): p. 2593-2603.

38. Chen, G., et al., TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 2012. 8(2): p. 272-88.

39. Zeng, H.C., et al., MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-beta signalling in osteoblasts. Nat Commun, 2017. 8: p. 15000.

40. Behr, B., et al., A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A, 2012. 18(9-10): p. 1079- 86.

41. Nakamura T., et al., Recombinant Human Basic Fibroblast Growth Factor Accelerates Fracture Healing by Enhancing Callus Remodeling in Experimental Dog Tibial Fracture. Journal of Bone And Mineral Research, 1998. 13(6): p. 942-949.

42. Tsurushima H., et al., Enhanced bone formation using hydroxyapatite ceramic coated with fibroblast growth factor-2. Acta Biomater, 2010. 6(7): p. 2751-9.

43. Yabutsuka T., et al., Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels. Materials (Basel), 2018. 11(8).

44. Lee H.B., et al., Microstructure and Characteristics of Calcium Phosphate Layers on Bioactive Oxide Surfaces of Air-Sintered Titanium Foams after Immersion in Simulated Body Fluid. Materials (Basel), 2016. 9(12).

45. Mutsuzaki H., et al., Calcium phosphate coating formed in infusion fluid mixture to enhance fixation strength of titanium screws. J Mater Sci Mater Med, 2007. 18(9): p. 1799-808.

46. Sogo Y., et al., Coprecipitation of cytochrome C with calcium phosphate on hydroxyapatite ceramic. Current Applied Physics, 2005. 5(5): p. 526-530.

47. Mutsuzaki H., et al., Fibroblast growth factor-2-apatite composite layers on titanium screw to reduce pin tract infection rate. J Biomed Mater Res B Appl Biomater, 2008. 86(2): p. 365-74.

48. Mutsuzaki H., et al., Enhanced wound healing associated with Sharpey's fiber-like tissue formation around FGF-2-apatite composite layers on percutaneous titanium screws in rabbits. Arch Orthop Trauma Surg, 2012. 132(1): p. 113-21.

49. Mutsuzaki H., et al., The calcium phosphate matrix of FGF-2-apatite composite layers contributes to their biological effects. Int J Mol Sci, 2014. 15(6): p. 10252- 70.

50. Fujii K., et al., Reducing the risk of impaired bone apposition to titanium screws with the use of fibroblast growth factor-2-apatite composite layer coating. J Orthop Surg Res, 2017. 12(1): p. 1.

51. Yanagisawa Y., et al., Initial clinical trial of pins coated with fibroblast growth factor-2–apatite T composite layer in external fixation of distal radius fractures. Journal of Orthopaedics, 2019, 16, 69-73.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る