リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Shear-induced Gelation of Aqueous Colloidal Silica Suspensions in the Presence of Poly(ethylene oxide)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Shear-induced Gelation of Aqueous Colloidal Silica Suspensions in the Presence of Poly(ethylene oxide)

黄, 逸 筑波大学

2021.07.27

概要

In this thesis, we introduce the background, the previous studies, and the objective in Chapter 1.

From Chapter 2 to Chapter 5, we state our experiments of this study. First, to understand the properties of the materials used, we characterize the silica suspension and the PEO polymer used in this study in Chapter 2. In Chapter 3 to 5, we show the results of shake-gel of silica-PEO suspensions by using state diagrams, recording the relaxation time, and measuring the viscosity against the shear rate, respectively. Based on the results above, we discuss how the parameters mentioned influence the shake-gel phenomenon.

In Chapter 6, we make a summary of the whole thesis.

この論文で使われている画像

参考文献

[1] A.D. Ebner, J.A. Ritter, J.D. Navratil, Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite - Silica composite, Ind. Eng. Chem. Res. 40 (2001) 1615–1623. doi:10.1021/ie000695c.

[2] L.T. Canham, Nanoscale semiconducting silicon as a nutritional food additive, Nanotechnology. 18 (2007) 185704. doi:10.1088/0957-4484/18/18/185704.

[3] M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, J.M. González-Calbet, Revisiting silica based ordered mesoporous materials: Medical applications, J. Mater. Chem. 16 (2006) 26–31. doi:10.1039/b509744d.

[4] Y. Adachi, A. Kobayashi, M. Kobayashi, Structure of colloidal flocs in relation to the dynamic properties of unstable suspension, Int. J. Polym. Sci. 2012 (2012). doi:10.1155/2012/574878.

[5] T. Koga, C. Li, Shear-Induced network formation in colloid/polymer mixtures: A molecular dynamics study, Nihon Reoroji Gakkaishi. 42 (2014) 123–127. doi:10.1678/rheology.42.123.

[6] M. Kobayashi, Y. Adachi, S. Ooi, On the steady shear viscosity of coagulated suspensions, Nihon Reoroji Gakkaishi. 28 (2000) 143–144. doi:10.1678/rheology.28.143.

[7] Y. Otsubo, K. Watanabe, Rheological behavior of silica suspensions flocculated by bridging, J. Nonnewton. Fluid Mech. 24 (1987) 265–278.

[8] N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions, Phys. Today. 62 (2009) 27–32. doi:10.1063/1.3248476.

[9] B. Cabane, K. Wong, P. Lindner, F. Lafuma, Shear induced gelation of colloidal dispersions, J. Rheol. (N. Y. N. Y). 41 (1997) 531–547. doi:10.1122/1.550874.

[10] J. Zebrowski, V. Prasad, W. Zhang, L.M. Walker, D.A. Weitz, Shake-gels: Shear-induced gelation of laponite-PEO mixtures, Colloids Surfaces A Physicochem. Eng. Asp. 213 (2003) 189–197. doi:10.1016/S0927-7757(02)00512-5.

[11] M. Mar Ramos-Tejada, P.F. Luckham, Shaken but not stirred: The formation of reversible particle - polymer gels under shear, Colloids Surfaces A Physicochem. Eng. Asp. 471 (2015) 164–169. doi:10.1016/j.colsurfa.2015.02.021.

[12] Y. Saito, Y. Hirose, Y. Otsubo, Shear-induced reversible gelation of nanoparticle suspensions flocculated by poly(ethylene oxide), Colloids Surfaces A Physicochem. Eng. Asp. 384 (2011) 40–46. doi:10.1016/j.colsurfa.2011.03.017.

[13] M. Shibayama, H. Kawada, T. Kume, T. Matsunaga, H. Iwai, T. Sano, N. Osaka, S. Miyazaki, S. Okabe, H. Endo, In situ small-angle neutron scattering and rheological measurements of shear-induced gelation, J. Chem. Phys. 127 (2007). doi:10.1063/1.2790900.

[14] G.P. Van der Beek, M.A. Cohen Stuart, The hydrodynamic thickness of adsorbed polymer layers measured by dynamic light scattering : effects of polymer concentration and segmental binding strength, J. Phys. 49 (1988) 1449–1454. doi:10.1051/jphys:019880049080144900.

[15] M. Kobayashi, M. Skarba, P. Galletto, D. Cakara, M. Borkovec, Effects of heat treatment on the aggregation and charging of Stöber-type silica, J. Colloid Interface Sci. 292 (2005) 139–147. doi:10.1016/j.jcis.2005.05.093.

[16] S. Kawasaki, M. Kobayashi, Affirmation of the effect of pH on shake-gel and shear thickening of a mixed suspension of polyethylene oxide and silica nanoparticles, Colloids Surfaces A Physicochem. Eng. Asp. 537 (2018) 236–242. doi:10.1016/j.colsurfa.2017.10.033.

[17] B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim USSR. 14 (1941) 633–662. doi:10.1016/0079-6816(93)90013-L.

[18] E.J.W. Verwey, Theory of the stability of lyophobic colloids, J. Phys. Colloid Chem. 51 (1947) 631–636. doi:10.1021/j150453a001.

[19] H. Collini, M. Mohr, P. Luckham, J. Shan, A. Russell, The effects of polymer concentration, shear rate and temperature on the gelation time of aqueous Silica-Poly(ethylene-oxide) “Shake-gels,” J. Colloid Interface Sci. 517 (2018) 1–8. doi:10.1016/j.jcis.2018.01.094.

[20] S.F. Liu, F. Lafuma, R. Audebert, Rheological behavior of moderately concentrated silica suspensions in the presence of adsorbed poly(ethylene oxide), Colloid Polym. Sci. 272 (1994) 196–203. doi:10.1007/BF00658848.

[21] D.C. Pozzo, L.M. Walker, Reversible shear gelation of polymer-clay dispersions, Colloids Surfaces A Physicochem. Eng. Asp. 240 (2004) 187–198. doi:10.1016/j.colsurfa.2004.04.040.

[22] G. Székely, M. Schaepertoens, P.R.J. Gaffney, A.G. Livingston, Beyond PEG2000: Synthesis and functionalisation of monodisperse pegylated homostars and clickable bivalent polyethyleneglycols, Chem. - A Eur. J. 20 (2014) 10038–10051. doi:10.1002/chem.201402186.

[23] G. Deželić, M. Wrischer, Z. Devidé, J.P. Kratohvil, Electron microscopy of Ludox colloidal silica, Kolloid-Zeitschrift. 171 (1960) 42–45. doi:10.1007/BF01520323.

[24] M. Doi, Soft Matter Physics, Oxford University Press, 2013. doi:10.1093/acprof:oso/9780199652952.001.0001.

[25] K.W. Ebagninin, A. Benchabane, K. Bekkour, Rheological characterization of poly(ethylene oxide) solutions of different molecular weights, J. Colloid Interface Sci. 336 (2009) 360–367. doi:10.1016/j.jcis.2009.03.014.

[26] J. Rubio, J.A. Kitchener, The mechanism of adsorption of poly(ethylene oxide) flocculant on silica, J. Colloid Interface Sci. 57 (1976) 132–142. doi:10.1016/0021-9797(76)90182-X.

[27] V. Can, O. Okay, Shake gels based on Laponite-PEO mixtures: Effect of polymer molecular weight, Des. Monomers Polym. 8 (2005) 453–462. doi:10.1163/1568555054937917.

[28] Y. Huang, A. Yamaguchi, T.D. Pham, M. Kobayashi, Charging and aggregation behavior of silica particles in the presence of lysozymes, Colloid Polym. Sci. 296 (2018) 145–155. doi:10.1007/s00396-017-4226-2.

[29] J. Laven, H.N. Stein, The electroviscous behavior of aqueous dispersions of amorphous silica (Ludox), J. Colloid Interface Sci. 238 (2001) 8–15. doi:10.1006/jcis.2001.7452.

[30] B. Bharti, J. Meissner, G.H. Findenegg, Aggregation of silica nanoparticles directed by adsorption of lysozyme, Langmuir. 27 (2011) 9823–9833. doi:10.1021/la201898v.

[31] F.E. Bailey, R.W. Callard, Some properties of poly(ethylene oxide)1 in aqueous solution, J. Appl. Polym. Sci. 1 (1959) 56–62. doi:10.1002/app.1959.070010110.

[32] M.I. Bahlouli, K. Bekkour, A. Benchabane, Y. Hemar, A. Nemdili, The effect of temperature on the rheological behavior of polyethylene oxide (PEO) solutions, Appl. Rheol. 23 (2013). doi:10.3933/ApplRheol-23-13435.

[33] M. Kamibayashi, H. Ogura, Y. Otsubo, Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging, J. Colloid Interface Sci. 321 (2008) 294–301. doi:10.1016/j.jcis.2008.02.022.

[34] Y. Huang, M. Kobayashi, Direct observation of relaxation of Aqueous Shake- Gel consisting of silica nanoparticles and polyethylene oxide, Polymers (Basel). 12 (2020). doi:10.3390/POLYM12051141.

[35] A.K. Gaharwar, V. Kishore, C. Rivera, W. Bullock, C.J. Wu, O. Akkus, G. Schmidt, Physically Crosslinked Nanocomposites from Silicate-Crosslinked PEO: Mechanical Properties and Osteogenic Differentiation of Human Mesenchymal Stem Cells, Macromol. Biosci. 12 (2012) 779–793. doi:10.1002/mabi.201100508.

[36] Y.J. Sheng, P.Y. Lai, H.K. Tsao, Nonequilibrium relaxation of a stretched polymer chain, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56 (1997) 1900–1909. doi:10.1103/PhysRevE.56.1900.

[37] M. Adam, M. Delsanti, Viscosity and Longest Relaxation Time of Semi-Dilute Polymer Solutions: Part Ii. Theta Solvent., J. Phys. Paris. 45 (1984) 1513– 1521. doi:10.1051/jphys:019840045090151300.

[38] P.G. De Gennes, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55 (1971) 572–579. doi:10.1063/1.1675789.

[39] P.G. De Gennes, Entangled polymers, Phys. Today. 36 (1983) 33–39. doi:10.1063/1.2915700.

[40] S.F. Edwards, The statistical mechanics of polymerized material, Proc. Phys. Soc. 92 (1967) 9–16. doi:10.1088/0370-1328/92/1/303.

[41] J. Shi, F. Yan, C. Wang, S. King, Y. Qiao, D. Qiu, Conformational Transitions of Dynamic Polymer Chains Induced by Colloidal Particles in Dilute Solution, Macromolecules. 53 (2020) 3052–3058. doi:10.1021/acs.macromol.0c00524.

[42] 日本化学会, 化学便覧 基礎編, 5th ed., 丸善出版, 2004.

[43] H.M.A. Ehmann, S. Spirk, A. Doliška, T. Mohan, W. Gössler, V. Ribitsch, M. Sfiligoj-Smole, K. Stana-Kleinschek, Generalized indirect fourier transformation as a valuable tool for the structural characterization of aqueous nanocrystalline cellulose suspensions by small angle X-ray scattering, Langmuir. 29 (2013) 3740–3748. doi:10.1021/la303122b.

[44] D. Lerche, T. Sobisch, Evaluation of particle interactions by in situ visualization of separation behaviour, Colloids Surfaces A Physicochem. Eng. Asp. 440 (2014) 122–130. doi:10.1016/j.colsurfa.2012.10.015.

[45] B. Jachimska, A. Kozłowska, A. Pajor-Świerzy, Protonation of lysozymes and its consequences for the adsorption onto a mica surface, Langmuir. 28 (2012) 11502–11510. doi:10.1021/la301558u.

[46] J.Y. Kim, S.H. Ahn, S.T. Kang, B.J. Yoon, Electrophoretic mobility equation for protein with molecular shape and charge multipole effects, J. Colloid Interface Sci. 299 (2006) 486–492. doi:10.1016/j.jcis.2006.02.003.

[47] W.F. Tan, L.K. Koopal, L.P. Weng, W.H. van Riemsdijk, W. Norde, Humic acid protein complexation, Geochim. Cosmochim. Acta. 72 (2008) 2090–2099. doi:10.1016/j.gca.2008.02.009.

[48] W. Norde, F.G. Gonzalez, C.A. Haynes, Protein adsorption on polystyrene latex particles, Polym. Adv. Technol. 6 (1995) 518–525.

[49] D.E. Kuehner, J. Engmann, F. Fergg, M. Wernick, H.W. Blanch, J.M. Prausnitz, Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions, J. Phys. Chem. B. 103 (1999) 1368–1374. doi:10.1021/jp983852i.

[50] A. Yamaguchi, M. Kobayashi, Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method, Colloid Polym. Sci. 294 (2016) 1019–1026. doi:10.1007/s00396-016-3852-4.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る