リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高融点金属表面上でのホウ素ナノ構造の作製」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高融点金属表面上でのホウ素ナノ構造の作製

シャハダット, ホサイン SHAHADAT, HOSSAIN 九州大学

2022.09.22

概要

二次元原子薄膜はグラフェンに代表されるように優れた電子移動度、強靭性などの優れた性質を持ちうることから、新規二次元物質の探索および物性研究が進められている。ホウ素から成るボロフェンは電子不足化合物の特性から種々の構造を取り、その結果として半導体から金属まで電子物性を調整できると考えられている。本論文では高融点金属であるタングステンおよびモリブデンの表面上でのホウ素薄膜の成長とその構造、電子物性について走査トンネル顕微鏡、低速電子回折、X線光電子分光法、第一原理計算を用いて明らかにされている。

第一章では、本研究の背景について、おもに貴金属表面上に作製されたホウ素薄膜の結晶構造、電子状態について概要した。

第二章では、固体表面科学における結晶構造、薄膜成長について述べられている。

第三章では、本研究にて用いられた元素の物性および測定手法について述べられている。

第四章では、W(110)表面におけるホウ素薄膜について述べられている。W(110)上の単層ホウ素は単相の9×1構造を示し、二層ホウ素は9×1と1×9の二相が共存し、三層では1×9の単層である。ホウ素薄膜は電子不足化合物の特性から種々の準安定相が共存することが一般的であるが、W(110)上では基板との相互作用によってホウ素の単相を得ることができる。トンネル分光測定により、作製された9×1、1×9は共に金属的な電子状態を有することを明らかにしている。

第五章では、Mo(112)表面におけるホウ素薄膜について述べられている。Mo(112)表面は溝を有する構造であり、ホウ素はこの溝に沿ってc(2×2)構造で成長する。走査トンネル顕微鏡、電子回折シミュレーション、第一原理計算からc(2×2)構造はB4クラスターからなる構造であることが明らかにされた。B4クラスターの電子状態はB2p軌道に起因する金属状態であることをトンネル分光測定により同定した。Mo(112)においてホウ素は単層では二次元薄膜を形成せず、B4―Moのネットワークを形成する。その理由としてMo(112)の溝を持つ異方性の高い構造を上げている。

第六章では、本研究で得られた知見をまとめ、本論文を総括している。

この論文で使われている画像

参考文献

[1] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions, Angew. Chemie. 127 (2015) 3155–3158. https://doi.org/10.1002/ange.201411246.

[2] J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7 (2016) 1–9. https://doi.org/10.1038/ncomms13352.

[3] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3 (2004) 404–409. https://doi.org/10.1038/nmat1134.

[4] G. Liu, S.B. Liu, B. Xu, C.Y. Ouyang, H.Y. Song, S. Guan, S.A. Yang, Multiple Dirac Points and Hydrogenation-Induced Magnetism of Germanene Layer on Al (111) Surface, J. Phys. Chem. Lett. 6 (2015) 4936–4942. https://doi.org/10.1021/acs.jpclett.5b02413.

[5] M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, Recent advances in synthesis, properties, and applications of phosphorene, Npj 2D Mater. Appl. 1 (2017) 1–12. https://doi.org/10.1038/s41699- 017-0007-5.

[6] A. Molle, C. Grazianetti, L. Tao, D. Taneja, M.H. Alam, D. Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev. 47 (2018) 6370– 6387. https://doi.org/10.1039/c8cs00338f.

[7] M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, M. Aeschlimann, A case study for the formation of stanene on a metal surface, Commun. Phys. 2 (2019) 1–9. https://doi.org/10.1038/s42005-019- 0111-2.

[8] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699–712. https://doi.org/10.1038/nnano.2012.193.

[9] A.J. Mannix, Z. Zhang, N.P. Guisinger, B.I. Yakobson, M.C. Hersam, Borophene as a prototype for synthetic 2D materials development, Nat. Nanotechnol. 13 (2018) 444–450. https://doi.org/10.1038/s41565-018-0157-4.

[10] Z. Xie, Y.P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu, H. Zhang, Solar-Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges, Sol. RRL. 4 (2020) 1–28. https://doi.org/10.1002/solr.201900400.

[11] Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horizons. 4 (2017) 997–1019. https://doi.org/10.1039/c7mh00543a.

[12] Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46 (2017) 6746–6763. https://doi.org/10.1039/c7cs00261k.

[13] X. Sun, X. Liu, J. Yin, J. Yu, Y. Li, Y. Hang, X. Zhou, M. Yu, J. Li, G. Tai, W. Guo, Two-Dimensional Boron Crystals: Structural Stability, Tunable Properties, Fabrications and Applications, Adv. Funct. Mater. 27 (2017) 1603300. https://doi.org/10.1002/adfm.201603300.

[14] S.Y. Xie, Y. Wang, X. Bin Li, Flat Boron: A New Cousin of Graphene, Adv. Mater. 31 (2019) 1–13. https://doi.org/10.1002/adma.201900392.

[15] E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of TwoDimensional Boron, Nano Lett. 12 (2012) 2441–2445.

[16] Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, Flexibility, and Ideal Strength of Borophenes, Adv. Funct. Mater. 27 (2017) 1605059. https://doi.org/10.1002/adfm.201605059.

[17] X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano. 6 (2012) 7443–7453. https://doi.org/10.1021/nn302696v.

[18] Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-Induced Nanoscale Undulations of Borophene on Silver, Nano Lett. 16 (2016) 6622–6627. https://doi.org/10.1021/acs.nanolett.6b03349.

[19] E.S. Penev, A. Kutana, B.I. Yakobson, Can Two-Dimensional Boron Superconduct?, Nano Lett. 16 (2016) 2522–2526. https://doi.org/10.1021/acs.nanolett.6b00070.

[20] M. Gao, Q.Z. Li, X.W. Yan, J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B. 95 (2017) 1–9. https://doi.org/10.1103/PhysRevB.95.024505.

[21] B. Feng, J. Zhang, R.Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B. 94 (2016) 2–6. https://doi.org/10.1103/PhysRevB.94.041408.

[22] B. Feng, O. Sugino, R.Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.C. Chiang, S. Meng, I. Matsuda, Dirac Fermions in Borophene, Phys. Rev. Lett. 118 (2017) 1–6. https://doi.org/10.1103/PhysRevLett.118.096401.

[23] X.F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y. Tian, H.T. Wang, Semimetallic twodimensional boron allotrope with massless Dirac fermions, Phys. Rev. Lett. 112 (2014) 1–5. https://doi.org/10.1103/PhysRevLett.112.085502.

[24] S. Gupta, A. Kutana, B.I. Yakobson, Dirac Cones and Nodal Line in Borophene, J. Phys. Chem. Lett. 9 (2018) 2757–2762. https://doi.org/10.1021/acs.jpclett.8b00640.

[25] B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, K. Miyamoto, T. Okuda, S. Meng, I. Matsuda, Discovery of 2D Anisotropic Dirac Cones, Adv. Mater. 30 (2018) 2–7. https://doi.org/10.1002/adma.201704025.

[26] L. Adamska, S. Sadasivam, J.J. Foley, P. Darancet, S. Sharifzadeh, First-Principles Investigation of Borophene as a Monolayer Transparent Conductor, J. Phys. Chem. C. 122 (2018) 4037–4045. https://doi.org/10.1021/acs.jpcc.7b10197.

[27] X.F. Zhou, A.R. Oganov, Z. Wang, I.A. Popov, A.I. Boldyrev, H.T. Wang, Twodimensional magnetic boron, Phys. Rev. B. 93 (2016) 1–6. https://doi.org/10.1103/PhysRevB.93.085406.

[28] W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene, Sci. Bull. 63 (2018) 282– 286. https://doi.org/10.1016/j.scib.2018.02.006.

[29] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8 (2016) 563–568. https://doi.org/10.1038/nchem.2491.

[30] Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, L. Chen, Synthesis of borophene nanoribbons on Ag(110) surface, Phys. Rev. Mater. 1 (2017) 021001. https://doi.org/10.1103/PhysRevMaterials.1.021001.

[31] R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces, Nat. Nanotechnol. 14 (2019) 44–49. https://doi.org/10.1038/s41565-018-0317-6.

[32] R. Wu, A. Gozar, I. Božović, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, Npj Quantum Mater. 4 (2019) 1–6. https://doi.org/10.1038/s41535-019-0181-0.

[33] B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam, N.P. Guisinger, Borophene Synthesis on Au(111), ACS Nano. 13 (2019) 3816–3822. https://doi.org/10.1021/acsnano.8b09339.

[34] Y. Wang, L. Kong, C. Chen, P. Cheng, B. Feng, K. Wu, L. Chen, Realization of Regular-Mixed Quasi-1D Borophene Chains with Long-Range Order, Adv. Mater. 32 (2020) 1–6. https://doi.org/10.1002/adma.202005128.

[35] N.A. Vinogradov, A. Lyalin, T. Taketsugu, A.S. Vinogradov, A. Preobrajenski, Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support, ACS Nano. 13 (2019) 14511–14518. https://doi.org/10.1021/acsnano.9b08296.

[36] R. Wu, S. Eltinge, I.K. Drozdov, A. Gozar, P. Zahl, J.T. Sadowski, S. Ismail-Beigi, I. Božović, Micrometre-scale single-crystalline borophene on a square-lattice Cu(100) surface, Nat. Chem. 14 (2022) 377–383. https://doi.org/10.1038/s41557- 021-00879-9.

[37] A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350 (2015) 1513–1516. https://doi.org/10.1126/science.aad1080.

[38] G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Synthesis of Atomically Thin Boron Films on Copper Foils, Angew. Chemie - Int. Ed. 54 (2015) 15473–15477. https://doi.org/10.1002/anie.201509285.

[39] X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S.T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei, J. Shi, A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy, Adv. Mater. 30 (2018) 1–11. https://doi.org/10.1002/adma.201803031.

[40] P. Ranjan, T.K. Sahu, R. Bhushan, S.S.R.K.C. Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding Borophene and Its Hybrids, Adv. Mater. 31 (2019) 1900353. https://doi.org/10.1002/adma.201900353.

[41] C. Hou, G. Tai, Z. Wu, J. Hao, Borophene: Current Status, Challenges and Opportunities, Chempluschem. 85 (2020) 2186–2196. https://doi.org/10.1002/cplu.202000550.

[42] I. Boustani, Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures of (n=2-14), Phys. Rev. B - Condens. Matter Mater. Phys. 55 (1997) 16426–16438. https://doi.org/10.1103/PhysRevB.55.16426.

[43] N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure, Phys. Rev. Lett. 98 (2007) 1–4. https://doi.org/10.1103/PhysRevLett.98.166804.

[44] X.Q. Wang, Structural and electronic stability of a volleyball-shaped B80 fullerene, Phys. Rev. B - Condens. Matter Mater. Phys. 82 (2010) 80–83. https://doi.org/10.1103/PhysRevB.82.153409.

[45] J. Zhao, L. Wang, F. Li, Z. Chen, B80 and other medium-sized boron clusters: Coreshell structures, not hollow cages, J. Phys. Chem. A. 114 (2010) 9969–9972. https://doi.org/10.1021/jp1018873.

[46] Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Two‐Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chemie. 127 (2015) 13214–13218. https://doi.org/10.1002/ange.201505425.

[47] E.S. Penev, V.I. Artyukhov, F. Ding, B.I. Yakobson, Unfolding the fullerene: Nanotubes, graphene and poly-elemental varieties by simulations, Adv. Mater. 24 (2012) 4956–4976. https://doi.org/10.1002/adma.201202322.

[48] H. Liu, J. Gao, J. Zhao, From boron cluster to two-dimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3 (2013) 27–30. https://doi.org/10.1038/srep03238.

[49] M. Pumera, C.H. An Wong, Graphane and hydrogenated graphene, Chem. Soc. Rev. 42 (2013) 5987–5995. https://doi.org/10.1039/c3cs60132c.

[50] Y. Jiao, F. Ma, J. Bell, A. Bilic, A. Du, Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties, Angew. Chemie. 128 (2016) 10448–10451. https://doi.org/10.1002/ange.201604369.

[51] Z. Wang, T.-Y. Lü, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys. 18 (2016) 31424–31430. https://doi.org/10.1039/c6cp06164h.

[52] Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chemie - Int. Ed. 52 (2013) 3156–3159. https://doi.org/10.1002/anie.201207972.

[53] J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Ultrathin Single-Crystalline Boron Nanosheets for Enhanced Electro-Optical Performances, Adv. Sci. 2 (2015) 1–11. https://doi.org/10.1002/advs.201500023.

[54] A.B. Preobrajenski, A. Lyalin, T. Taketsugu, N.A. Vinogradov, A.S. Vinogradov, Honeycomb Boron on Al(111): From the Concept of Borophene to the TwoDimensional Boride, ACS Nano. 15 (2021) 15153–15165. https://doi.org/10.1021/acsnano.1c05603.

[55] C. Yue, X.J. Weng, G. Gao, A.R. Oganov, X. Dong, X. Shao, X. Wang, J. Sun, B. Xu, H.T. Wang, X.F. Zhou, Y. Tian, Formation of copper boride on Cu(111), Fundam. Res. 1 (2021) 482–487. https://doi.org/10.1016/j.fmre.2021.05.003.

[56] X. Liu, Q. Li, Q. Ruan, M.S. Rahn, B.I. Yakobson, M.C. Hersam, Borophene synthesis beyond the single-atomic-layer limit, Nat. Mater. 21 (2022) 35–40. https://doi.org/10.1038/s41563-021-01084-2.

[57] C. Chen, H. Lv, P. Zhang, Z. Zhuo, Y. Wang, C. Ma, W. Li, X. Wang, B. Feng, P. Cheng, X. Wu, K. Wu, L. Chen, Synthesis of bilayer borophene, Nat. Chem. 14 (2022) 25-31. https://doi.org/10.1038/s41557-021-00813-z.

[58] P. Sutter, E. Sutter, Large-Scale Layer-by-Layer Synthesis of Borophene on Ru(0001), Chem. Mater. 33 (2021) 8838–8843. https://doi.org/10.1021/acs.chemmater.1c03061.

[59] B. Mortazavi, M. Silani, E. V. Podryabinkin, T. Rabczuk, X. Zhuang, A. V. Shapeev, First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials, Adv. Mater. 33 (2021) 202102807. https://doi.org/10.1002/adma.202102807.

[60] S. Yadav, M.A. Sadique, A. Kaushik, P. Ranjan, R. Khan, A.K. Srivastava, Borophene as an emerging 2D flatland for biomedical applications: Current challenges and future prospects, J. Mater. Chem. B. 10 (2022) 1146–1175. https://doi.org/10.1039/d1tb02277f.

[61] Z.Q. Wang, T.Y. Lü, H.Q. Wang, Y.P. Feng, J.C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(2) (2019) 23403. https://doi.org/10.1007/s11467-019-0884-5.

[62] M. Tatullo, B. Zavan, F. Genovese, B. Codispoti, I. Makeeva, S. Rengo, L. Fortunato, G. Spagnuolo, Borophene is a promising 2D allotropic material for biomedical devices, Appl. Sci. 9 (2019) 3446. https://doi.org/10.3390/app9173446.

[63] A. Lherbier, A. Rafael Botello-Méndez, J.C. Charlier, Electronic and optical properties of pristine and oxidized borophene, 2D Mater. 3 (2016) 1–9. https://doi.org/10.1088/2053-1583/3/4/045006.

[64] B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C. 4 (2016) 3592–3598. https://doi.org/10.1039/c6tc00115g.

[65] Y. Huang, S.N. Shirodkar, B.I. Yakobson, Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration, J. Am. Chem. Soc. 139 (2017) 17181–17185. https://doi.org/10.1021/jacs.7b10329.

[66] D. Li, J. He, G. Ding, Q.Q. Tang, Y. Ying, J. He, C. Zhong, Y. Liu, C. Feng, Q. Sun, H. Zhou, P. Zhou, G. Zhang, Stretch-Driven Increase in Ultrahigh Thermal Conductance of Hydrogenated Borophene and Dimensionality Crossover in Phonon Transmission, Adv. Funct. Mater. 28 (2018) 1–7. https://doi.org/10.1002/adfm.201801685.

[67] B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C.V. Singh, T. Rabczuk, L.F.C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties, Nanoscale. 10 (2018) 3759–3768. https://doi.org/10.1039/c7nr08725j.

[68] G. Liu, H. Wang, Y. Gao, J. Zhou, H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations, Phys. Chem. Chem. Phys. 19 (2017) 2843–2849. https://doi.org/10.1039/c6cp07367k.

[69] H. Sun, Q. Li, X.G. Wan, First-principles study of thermal properties of borophene, Phys. Chem. Chem. Phys. 18 (2016) 14927–14932. https://doi.org/10.1039/c6cp02029a.

[70] H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7 (2017) 1–8. https://doi.org/10.1038/srep45986.

[71] J. Shang, Y. Ma, Y. Gu, L. Kou, Two dimensional boron nanosheets: Synthesis, properties and applications, Phys. Chem. Chem. Phys. 20 (2018) 28964–28978. https://doi.org/10.1039/c8cp04850a.

[72] D. Malko, C. Neiss, F. Viñes, A. Görling, Competition for graphene: Graphynes with direction-dependent dirac cones, Phys. Rev. Lett. 108 (2012) 1–4. https://doi.org/10.1103/PhysRevLett.108.086804.

[73] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, The origin of the anomalous superconducting properties of MgB2, Nature. 418 (2002) 758–760. https://doi.org/10.1038/nature00898.

[74] J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Superconductivity of metallic Boron in MgB2, Phys. Rev. Lett. 86 (2001) 4656– 4659. https://doi.org/10.1103/PhysRevLett.86.4656.

[75] J.M. An, W.E. Pickett, Superconductivity of MgB2: Covalent bonds driven metallic, Phys. Rev. Lett. 86 (2001) 4366–4369. https://doi.org/10.1103/PhysRevLett.86.4366.

[76] G. Profeta, M. Calandra, F. Mauri, Phonon-mediated superconductivity in graphene by lithium deposition, Nat. Phys. 8 (2012) 131–134. https://doi.org/10.1038/nphys2181.

[77] M. Xue, G. Chen, H. Yang, Y. Zhu, D. Wang, J. He, T. Cao, Superconductivity in Potassium-Doped Few-Layer Graphene, J. Am. Chem. Soc. 134 (2012) 6536–6539. https://doi.org/10.1021/ja3003217.

[78] A.A. Kistanov, Y. Cai, K. Zhou, N. Srikanth, S. V. Dmitriev, Y.W. Zhang, Exploring the charge localization and band gap opening of borophene: A firstprinciples study, Nanoscale. 10 (2018) 1403–1410. https://doi.org/10.1039/c7nr06537j.

[79] L. Kou, Y. Ma, L. Zhou, Z. Sun, Y. Gu, A. Du, S. Smith, C. Chen, High-mobility anisotropic transport in few-layer γ-B28 films, Nanoscale. 8 (2016) 20111–20117. https://doi.org/10.1039/c6nr07271b.

[80] L. Shi, C. Ling, Y. Ouyang, J. Wang, High intrinsic catalytic activity of twodimensional boron monolayers for the hydrogen evolution reaction, Nanoscale. 9 (2017) 533–537. https://doi.org/10.1039/c6nr06621f.

[81] S.H. Mir, S. Chakraborty, P.C. Jha, J. Wärnå, H. Soni, P.K. Jha, R. Ahuja, Twodimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction, Appl. Phys. Lett. 109 (2016) 053903. https://doi.org/10.1063/1.4960102.

[82] H. Park, A. Encinas, J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction, Angew. Chemie - Int. Ed. 56 (2017) 5575–5578. https://doi.org/10.1002/anie.201611756.

[83] Y. Singh, S. Back, Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts, Phys. Chem. Chem. Phys. 20 (2018) 21095–21104. https://doi.org/10.1039/c8cp03130d.

[84] X. Tan, H.A. Tahini, S.C. Smith, Borophene as a Promising Material for ChargeModulated Switchable CO2 Capture, ACS Appl. Mater. Interfaces. 9 (2017) 19825– 19830. https://doi.org/10.1021/acsami.7b03676.

[85] V. Nagarajan, R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol – A first-principles study, Comput. Theor. Chem. 1105 (2017) 52–60. https://doi.org/10.1016/j.comptc.2017.02.023.

[86] A. Shahbazi Kootenaei, G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. Sect. A Gen. At. Solid State Phys. 380 (2016) 2664–2668. https://doi.org/10.1016/j.physleta.2016.06.016.

[87] A. Omidvar, Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection, Comput. Theor. Chem. 1115 (2017) 179–184. https://doi.org/10.1016/j.comptc.2017.06.018.

[88] R. Chandiramouli, V. Nagarajan, Borospherene nanostructure as CO and NO sensor – A first-principles study, Vacuum. 142 (2017) 13–20. https://doi.org/10.1016/j.vacuum.2017.04.040.

[89] K. Shi, W. Jiang, A. Guo, K. Wang, C. Wu, Magnetic and thermodynamic properties of Ising model with borophene structure in a longitudinal magnetic field, Phys. A Stat. Mech. Its Appl. 500 (2018) 11–22. https://doi.org/10.1016/j.physa.2018.02.075.

[90] C.L. Zou, D.Q. Guo, F. Zhang, J. Meng, H.L. Miao, W. Jiang, Magnetization, the susceptibilities and the hysteresis loops of a borophene structure, Phys. E LowDimensional Syst. Nanostructures. 104 (2018) 138–145. https://doi.org/10.1016/j.physe.2018.07.028.

[91] F. Scarpa, Auxetic materials for bioprostheses, IEEE Signal Process. Mag. 25 (2008) 8–10. https://doi.org/10.1109/MSP.2008.926663.

[92] A. Rastgou, H. Soleymanabadi, A. Bodaghi, DNA sequencing by borophene nanosheet via an electronic response: A theoretical study, Microelectron. Eng. 169 (2017) 9–15. https://doi.org/10.1016/j.mee.2016.11.012.

[93] X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale. 8 (2016) 15340–15347. https://doi.org/10.1039/c6nr04186h.

[94] D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, R. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries, J. Mater. Chem. A. 5 (2017) 2328–2338. https://doi.org/10.1039/c6ta09730h.

[95] S. Göktuna, N. Taşaltın, Preparation and characterization of PANI: α borophene electrode for supercapacitors, Phys. E Low-Dimensional Syst. Nanostructures. 134 (2021) 114833. https://doi.org/10.1016/j.physe.2021.114833.

[96] H.R. Jiang, Z. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy. 23 (2016) 97–104. https://doi.org/10.1016/j.nanoen.2016.03.013.

[97] W. Liu, X. Yan, J. Lang, Q. Xue, Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: Influences of organic solvents and the alkyl chains, J. Mater. Chem. 21 (2011) 13205–13212. https://doi.org/10.1039/c1jm11930c.

[98] N.K. Jena, R.B. Araujo, V. Shukla, R. Ahuja, Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries, ACS Appl. Mater. Interfaces. 9 (2017) 16148–16158. https://doi.org/10.1021/acsami.7b01421.

[99] E. Süleyman, G.A. De Wijs, G. Brocks, DFT study of planar boron sheets: A new template for hydrogen storage, J. Phys. Chem. C. 113 (2009) 18962–18967. https://doi.org/10.1021/jp9077079.

[100] J. Wang, Y. Du, L. Sun, Ca-decorated novel boron sheet: A potential hydrogen storage medium, Int. J. Hydrogen Energy. 41 (2016) 5276–5283. https://doi.org/10.1016/j.ijhydene.2016.01.039.

[101] J. Li, H. Zhang, G. Yang, Ultrahigh-Capacity Molecular Hydrogen Storage of a Lithium-Decorated Boron Monolayer, J. Phys. Chem. C. 119 (2015) 19681–19688. https://doi.org/10.1021/acs.jpcc.5b06164.

[102] Z.A. Piazza, W.L. Li, C. Romanescu, A.P. Sergeeva, L.S. Wang, A.I. Boldyrev, A photoelectron spectroscopy and ab initio study of B21 - : Negatively charged boron clusters continue to be planar at 21, J. Chem. Phys. 136 (2012) 104310. https://doi.org/10.1063/1.3692967.

[103] A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W.L. Li, A.I. Boldyrev, L.S. Wang, B22 - and B23 - : All-boron analogues of anthracene and phenanthrene, J. Am. Chem. Soc. 134 (2012) 18065–18073. https://doi.org/10.1021/ja307605t.

[104] B. Kiran, S. Bulusu, H.J. Zhai, S. Yoo, X.C. Zeng, L.S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 961–964. https://doi.org/10.1073/pnas.0408132102.

[105] X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. 9 (2009) 4268–4272. https://doi.org/10.1021/nl902515k.

[106] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B - Condens. Matter Mater. Phys. 63 (2001) 1–12. https://doi.org/10.1103/PhysRevB.63.045115.

[107] J.K. Burdett, E. Canadell, G.J. Miller, Electronic structure of transition-metal borides with the AlB2 structure, J. Am. Chem. Soc. 108 (1986) 6561–6568. https://doi.org/10.1021/ja00281a020.

[108] K.I. Portnoi, V.M. Romashov, Y. V. Levinskii, I. V. Romanovich, Phase diagram of the system tungsten-Boron, Sov. Powder Metall. Met. Ceram. 6 (1967) 398–402. https://doi.org/10.1007/BF00775398.

[109] J. Karwan-Baczewska, B. Onderka, Sintering Prealloyed Powders Fe-Ni-Cu-Mo Modified by Boron Base on Thermodynamic Investigations, in: L.A. Dobrzanski (Ed.), Powder Metall. - Fundam. Case Stud., InTech, Rijeka, Croatia, 2017: pp. 53– 71. https://doi.org/10.5772/66875.

[110] C.W. Tucker, Interaction of boron with tungsten single crystal substrates, Surf. Sci. 5 (1966) 179–186. https://doi.org/10.1016/0039-6028(66)90079-3.

[111] F.J. Tuli, G. Peng, S. Hossain, K. Ninomiya, R. Ahmed, T. Nakagawa, S. Mizuno, Formation of ordered B structure on W(100), Surf. Sci. 713 (2021) 121906. https://doi.org/10.1016/j.susc.2021.121906.

[112] Y. Imamura, Growth of boron thin film on W(112), MSc. thesis, Kyushu University, Japan, 2019.

[113] Y. Kameoka, Elucidation of boron adsorption structure on W(112), MSc. thesis, Kyushu University, Japan, 2020.

[114] Z.H. Cui, E. Jimenez-Izal, A.N. Alexandrova, Prediction of Two-Dimensional Phase of Boron with Anisotropic Electric Conductivity, J. Phys. Chem. Lett. 8 (2017) 1224–1228. https://doi.org/10.1021/acs.jpclett.7b00275.

[115] T.B. Fryberger, J.L. Grant, P.C. Stair, Adsorption of Boron on Molybdenum(100) and Its Effect on Chemisorption of Carbon Monoxide, Ethene, Propene, and 3,3,3- Trifluoropropene, Langmuir. 3 (1987) 1015–1025. https://doi.org/10.1021/la00078a024.

[116] M.P. Allan, S. Berner, M. Corso, T. Greber, J. Osterwalder, Tunable self-assembly of one-dimensional nanostructures with orthogonal directions, Nanoscale Res. Lett. 2 (2007) 94–99. https://doi.org/10.1007/s11671-006-9036-2.

[117] M.A. Bravais, On the systems formed by points regularly distributed on a plane or in space, J. Ecole. Polytech. (1850) 1–128.

[118] E.A. Wood, Vocabulary of surface crystallography, J. Appl. Phys. 35 (1964) 1306– 1312. https://doi.org/10.1063/1.1713610.

[119] R.L. Park, H.H. Madden, Annealing changes on the (100) surface of palladium and their effect on CO adsorption, Surf. Sci. 11 (1968) 188–202. https://doi.org/10.1016/0039-6028(68)90066-6.

[120] Y.W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001), Phys. Rev. Lett. 65 (1990) 1020–1023. https://doi.org/10.1103/PhysRevLett.65.1020.

[121] S.G. Corcoran, G.S. Chakarova, K. Sieradzki, Stranski-Krastanov growth of Ag on Au(111) electrodes, Phys. Rev. Lett. 71 (1993) 1585–1588. https://doi.org/10.1103/PhysRevLett.71.1585.

[122] A. Fissel, R. Akhtariev, W. Richter, Stranski–Krastanov growth of Si on SiC(0001), Thin Solid Films. 380 (2000) 42–45. https://doi.org/10.1016/S0040-6090(00)01525- X.

[123] H. Davy, III. The Bakerian Lecture. An account of some new analytical researches on the nature of certain bodies, particularly the alkalies, phosphorus, sulphur, carbonaceous matter, and the acids hitherto undecompounded; with some general observations on chemical, Philos. Trans. R. Soc. London. 99 (1809) 39–104. https://doi.org/10.1098/rstl.1809.0005.

[124] A.W. Laubengayer, D.T. Hurd, A.E. Newkirk, J.L. Hoard, Boron. I. Preparation and Properties of Pure Crystalline Boron, J. Am. Chem. Soc. 65 (1943) 1924–1931. https://doi.org/10.1021/ja01250a036.

[125] B. Albert, H. Hillebrecht, Boron: Elementary challenge for experimenters and theoreticians, Angew. Chemie - Int. Ed. 48 (2009) 8640–8668. https://doi.org/10.1002/anie.200903246.

[126] B.F. Decker, J.S. Kasper, The crystal structure of a simple rhombohedral form of boron, Acta Crystallogr. 12 (1959) 503–506. https://doi.org/10.1107/s0365110x59001529.

[127] D.E. Sands, J.L. Hoard, Rhombohedral elemental boron, J. Am. Chem. Soc. 79 (1957) 5582–5583.

[128] D.B. Sullenger, K.D. Phipps, P.W. Seabaugh, C.R. Hudgens, D.E. Sands, J.S. Cantrell, Boron modifications produced in an induction-coupled argon plasma, Science 163 (1969) 935–937. https://doi.org/10.1126/science.163.3870.935.

[129] H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B. V. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20, Nature. 407 (2000) 60–63. https://doi.org/10.1038/35024037.

[130] Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun. 5 (2014) 3113. https://doi.org/10.1038/ncomms4113.

[131] J.M. Mercero, A.I. Boldyrev, G. Merino, J.M. Ugalde, Recent developments and future prospects of all-metal aromatic compounds, Chem. Soc. Rev. 44 (2015) 6519– 6534. https://doi.org/10.1039/c5cs00341e.

[132] A.I. Boldyrev, L.S. Wang, Beyond organic chemistry: Aromaticity in atomic clusters, Phys. Chem. Chem. Phys. 18 (2016) 11589–11605. https://doi.org/10.1039/c5cp07465g.

[133] H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets, Phys. Rev. Lett. 99 (2007) 12– 15. https://doi.org/10.1103/PhysRevLett.99.115501.

[134] K.C. Lau, R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C. 111 (2007) 2906–2912. https://doi.org/10.1021/jp066719w.

[135] K.G. Günther, Aufdampfschidhten aus halbleitenden III-V-Verbindungen, Zeitschrift Für Naturforsch. A. 13 (1958) 1081–1089. https://doi.org/10.1515/zna-1958-1210.

[136] J.E. Davey, T. Pankey, Epitaxial GaAs films deposited by vacuum evaporation, J. Appl. Phys. 39 (1968) 1941–1948. https://doi.org/10.1063/1.1656467.

[137] A.Y. Cho, Morphology of epitaxial growth of GaAs by a molecular beam method: The observation of surface structures, J. Appl. Phys. 41 (1970) 2780–2786. https://doi.org/10.1063/1.1659315.

[138] G. Held, Low-Energy Electron Diffraction: Crystallography of Surfaces and Interfaces, Methods Phys. Chem. 1 (2012) 625–642. https://doi.org/10.1002/9783527636839.ch20.

[139] M.P. Seah, W.A. Dench, Quantitative Electron Spectroscopy of Surfaces, Surf. Interface Anal. 1 (1979) 2–11.

[140] K.W. Kolasinski, Surface Science Foundations of Catalysis and Nanoscience, 3rd ed., Wiley, 2012.

[141] B.E. Murphy, The physico-chemical properties of fullerenes and porphyrin derivatives deposited on conducting surfaces, Ph.D. theis, Trinity College Dublin, 2014.

[142] T. Shirasawa, Low-Energy Electron Diffraction, in: Ref. Modul. Chem. Mol. Sci. Chem. Eng., 3rd ed., Elsevier, 2018: pp. 365–373. https://doi.org/10.1016/B978-0- 12-409547-2.14388-4.

[143] P.J. Rous, J.B. Pendry, The theory of tensor LEED, Surf. Sci. 219 (1989) 355–372. https://doi.org/10.1016/0039-6028(89)90513-X.

[144] P.J. Rous, J.B. Pendry, Tensor LEED I: A technique for high speed surface structure determination by low energy electron diffraction. TLEED1, Comput. Phys. Commun. 54 (1989) 137–156. https://doi.org/10.1016/0010-4655(89)90039-8.

[145] F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature. 510 (2014) 522– 524. https://doi.org/10.1038/nature13434.

[146] C. Lu, J. Yang, X. Lei, J. Huang, Z. Ye, S. Chen, Y. Zhao, First-principles calculations on adsorption-diffusion behavior of Boron atom with tungsten surface, Comput. Mater. Sci. 183 (2020) 109908. https://doi.org/10.1016/j.commatsci.2020.109908.

[147] S. Dorfman, R.R. Braga, K.C. Mundim, D. Fuks, Simulations of initial stages of boron deposition on (1 1 0) tungsten surface, Surf. Sci. 566–568 (2004) 676–682. https://doi.org/10.1016/j.susc.2004.05.128.

[148] D. Nečas, P. Klapetek, Gwyddion: An open-source software for SPM data analysis, Cent. Eur. J. Phys. 10 (2012) 181–188. https://doi.org/10.2478/s11534-011-0096-2.

[149] R. Ahmed, T. Nakagawa, S. Mizuno, Structure determination of ultra-flat stanene on Cu(111) using low energy electron diffraction, Surf. Sci. 691 (2020) 121498. https://doi.org/10.1016/j.susc.2019.121498.

[150] M.A. Van Hove, W. Moritz, H. Over, P.J. Rous, A. Wander, A. Barbieri, N. Materer, U. Starke, G.A. Somorjai, Automated determination of complex surface structures by LEED, Surf. Sci. Rep. 19 (1993) 191–229. https://doi.org/10.1016/0167- 5729(93)90011-D.

[151] J.B. Pendry, Reliability factors for LEED calculations, J. Phys. C Solid State Phys. 13 (1980) 937–944. https://doi.org/10.1088/0022-3719/13/5/024.

[152] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.

[153] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H. V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter. 29 (2017) 465901. https://doi.org/10.1088/1361-648X/aa8f79.

[154] A. Otero-De-La-Roza, E.R. Johnson, V. Luaña, Critic2: A program for real-space analysis of quantum chemical interactions in solids, Comput. Phys. Commun. 185 (2014) 1007–1018. https://doi.org/10.1016/j.cpc.2013.10.026.

[155] K. Zakeri, T.R.F. Peixoto, Y. Zhang, J. Prokop, J. Kirschner, On the preparation of clean tungsten single crystals, Surf. Sci. 604 (2010) L1–L3. https://doi.org/10.1016/j.susc.2009.10.020.

[156] R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces, Nat. Nanotechnol. 14 (2019) 44–49. https://doi.org/10.1038/s41565-018-0317-6.

[157] R. Wu, S. Eltinge, I.K. Drozdov, A. Gozar, P. Zahl, J.T. Sadowski, S. Ismail-Beigi, I. Božović, Micrometre-scale single-crystalline borophene on a square-lattice Cu(100) surface, Nat. Chem. 14 (2022) 377–383. https://doi.org/10.1038/s41557- 021-00879-9.

[158] N. Gao, X. Wu, X. Jiang, Y. Bai, J. Zhao, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding, FlatChem. 7 (2018) 48–54. https://doi.org/10.1016/j.flatc.2017.08.008.

[159] M. Nakhaee, S.A. Ketabi, F.M. Peeters, Dirac nodal line in bilayer borophene: Tightbinding model and low-energy effective Hamiltonian, Phys. Rev. B. 98 (2018) 1–8. https://doi.org/10.1103/PhysRevB.98.115413.

[160] D. Li, Q. Tang, J. He, B. Li, G. Ding, C. Feng, H. Zhou, G. Zhang, From Two- to Three-Dimensional van der Waals Layered Structures of Boron Crystals: An Ab Initio Study, ACS Omega. 4 (2019) 8015–8021. https://doi.org/10.1021/acsomega.9b00534.

[161] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY: A Reference Book of Standard Data For Use In X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979.

[162] M.I. Eremets, V. V. Struzhkin, H.K. Mao, R.J. Hemley, Superconductivity in boron, Science 293 (2001) 272–274. https://doi.org/10.1126/science.1062286.

[163] R. Wiesendanger, Magnetic nanostructures studied by scanning probe microscopy and spectroscopy, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 15 (1997) 1330. https://doi.org/10.1116/1.589460.

[164] Q. Li, V.S.C. Kolluru, M.S. Rahn, E. Schwenker, S. Li, R.G. Hennig, P. Darancet, M.K.Y. Chan, M.C. Hersam, Synthesis of borophane polymorphs through hydrogenation of borophene, Science 371 (2021) 1143–1148. https://doi.org/10.1126/science.abg1874.

[165] T. V. Afanasieva, A.G. Fedorus, D. V. Rumiantsev, I.N. Yakovkin, Honeycomb BeO monolayer on the Mo(112) surface: LEED and DFT study, Appl. Surf. Sci. 428 (2018) 815–818. https://doi.org/10.1016/j.apsusc.2017.09.209.

[166] S. Stepanowskyi, I. Ubogyi, J. Kołaczkiewicz, Ultrathin films of Pd and Pt on the molybdenum (211) face, Surf. Sci. 411 (1998) 176–185. https://doi.org/10.1016/S0039-6028(98)00362-8.

[167] J. Śliwiński, M. Wiejak, J. Kołaczkiewicz, I.N. Yakovkin, Indirect interaction in Ag and Pd adsorbed layers on the Mo(112) surface, Appl. Surf. Sci. 265 (2013) 615– 620. https://doi.org/10.1016/j.apsusc.2012.11.060.

[168] O.M. Braun, V.K. Medvedev, Interaction between particles adsorbed on metal surfaces, Uspekhi Fiz. Nauk. 157 (1989) 631. https://doi.org/10.3367/UFNr.0157.198904c.0631.

[169] I.N. Yakovkin, K. Fukutani, H. Hayashi, J. Jiang, T. Horike, Y. Nagata, T. Habuchi, D. Hirayama, H. Iwasawa, K. Shimada, Y.B. Losovyj, P.A. Dowben, Fermi surface of Mo(112) and indirect interaction between adsorbed atoms, Phys. Rev. B - Condens. Matter Mater. Phys. 86 (2012) 1–8. https://doi.org/10.1103/PhysRevB.86.125401.

[170] C. Oleksy, J. Lorenc, Ground states of a one-dimensional lattice-gas model with an infinite-range nonconvex interaction. A numerical study, Phys. Rev. B - Condens. Matter Mater. Phys. 54 (1996) 5955–5960. https://doi.org/10.1103/PhysRevB.54.5955.

[171] J. Weissenrieder, S. Kaya, J.L. Lu, H.J. Gao, S. Shaikhutdinov, H.J. Freund, M. Sierka, T.K. Todorova, J. Sauer, Atomic structure of a thin silica film on a Mo(112) substrate: A two-dimensional network of SiO4 tetrahedra, Phys. Rev. Lett. 95 (2005) 1–4. https://doi.org/10.1103/PhysRevLett.95.076103.

[172] I.N. Yakovkin, Favorable silica monolayer structures on the Mo(112) surface, Surf. Rev. Lett. 12 (2005) 449–456. https://doi.org/10.1142/S0218625X05007281.

[173] M.S. Chen, A.K. Santra, D.W. Goodman, Structure of thin SiO2 films grown on Mo(112), Phys. Rev. B - Condens. Matter Mater. Phys. 69 (2004) 1–7. https://doi.org/10.1103/PhysRevB.69.155404.

[174] T. Kinoshita, S. Mizuno, Surface structure determination of silica single layer on Mo(112) by LEED, Surf. Sci. 605 (2011) 1209–1213. https://doi.org/10.1016/j.susc.2011.04.003.

[175] J. Kołaczkiewicz, C. Oleksy, Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces, Surf. Sci. 669 (2018) 57–63. https://doi.org/10.1016/j.susc.2017.11.011.

[176] Y.B. Losovyj, Adsorption of gadolinium on the Mo(112) crystal face, Vacuum. 48 (1997) 195–198.

[177] A. Kiejna, Comparative study of Ag, Au, Pd, and Pt adsorption on Mo and Ta (112) surfaces, Phys. Rev. B - Condens. Matter Mater. Phys. 74 (2006) 1–9. https://doi.org/10.1103/PhysRevB.74.235429.

[178] T.B. Marder, Contemporary Metal Boron Chemistry, Springer, Berlin, 2008.

[179] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B. 46 (1992) 6671– 6687. https://doi.org/10.1103/PhysRevB.46.6671.

[180] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892.

[181] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188.

[182] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8 (2016) 563–568. https://doi.org/10.1038/nchem.2491.

[183] H. Wei Jin, Q. Shu Li, Structure and stability of B4, B4 + and B4 – clusters, Phys. Chem. Chem. Phys. 5 (2003) 1110–1115. https://doi.org/10.1039/b209215h.

[184] J. Kolacziewicz, E. Bauer, The adsorption of Ag and Au on W (211) surfaces, Surf. Sci. 144 (1984) 477–494. https://doi.org/10.1016/0039-6028(84)90113-4.

[185] T.P. Smereka, l. M. Ubogyi, Y.B. Losovyi, The role of electron structure of substrates in interaction of adsorbed atoms on furrow faces of transition metals, Vacuum. 46 (1995) 429–432. https://doi.org/10.1016/0042-207X(94)00099-9.

[186] S. Lee, D.M. Bylander, L. Kleinman, Bands and bonds of B12, Phys. Rev. B. 42 (1990) 1316–1320. https://doi.org/10.1103/PhysRevB.42.1316.

[187] H. Werheit, The electronic structure of B-rhombohedral boron and the relation to its physical properties, Jpn. J. Appl. Phys. 10 (1994) 66–69.

[188] O.A.. Golikov, N.E.. Solovev, Y.A.. Ugai, V.A. Feigelman, Electrophysical properties of α-rhombohedral boron, Phys. Stat. Sol. A. 86 (1984) 51–54.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る