リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cosmological implications of Standard Model criticality and Higgs inflation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cosmological implications of Standard Model criticality and Higgs inflation

Hamada, Yuta 大阪大学

2020.04

概要

The observed Higgs mass indicates that the Standard Model can be valid up to near the Planck scale MP. Within this framework, it is important to examine how little modification is necessary to fit the recent experimental results in particle physics and cosmology. As a minimal extension, we consider the possibility that the Higgs field plays the role of inflaton and that the dark matter is the Higgs-portal scalar field. We assume that the extended Standard Model is valid up to the string scale 1017GeV. (This translates to the assumption that all the non-minimal couplings are not particularly large, ξ≲102, as in the critical Higgs inflation, since MP/102∼1017GeV.) We find a correlated theoretical bound on the tensor-to-scalar ratio r and the dark matter mass mDM. As a result, the Planck bound r<0.09 implies that the dark-matter mass must be smaller than 1.1 TeV, while the PandaX-II bound on the dark-matter mass mDM>0.7±0.2TeV leads to r≳2×10−3. Both are within the range of near-future detection. When we include the right-handed neutrinos of mass MR∼1014 GeV, the allowed region becomes wider, but we still predict r≳10−3 in the most of the parameter space. The most conservative bound becomes r>10−5 if we allow three-parameter tuning of mDM, MR, and the top-quark mass.

この論文で使われている画像

参考文献

[1] V. Sanz, J. Setford, Composite Higgs models after run 2, Adv. High Energy Phys. 2018 (2018) 7168480, arXiv: 1703.10190.

[2] O. Witzel, Review on composite Higgs models, PoS LATTICE2018 (2019) 006, arXiv:1901.08216.

[3] M. Holthausen, K.S. Lim, M. Lindner, Planck scale boundary conditions and the Higgs mass, J. High Energy Phys. 1202 (2012) 037, arXiv:1112.2415.

[4] F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl, M. Shaposhnikov, Higgs boson mass and new physics, J. High Energy Phys. 1210 (2012) 140, arXiv:1205.2893.

[5] G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, J. High Energy Phys. 08 (2012) 098, arXiv:1205.6497.

[6] S. Alekhin, A. Djouadi, S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214–219, arXiv:1207.0980.

[7] I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001, arXiv:1209.0393.

[8] Y. Hamada, H. Kawai, K.-y. Oda, Bare Higgs mass at Planck scale, Phys. Rev. D 87 (5) (2013) 053009, arXiv: 1210.2538, Erratum: Phys. Rev. D 89 (5) (2014) 059901.

[9] F. Jegerlehner, The Standard Model as a low-energy effective theory: what is triggering the Higgs mechanism?, arXiv:1304.7813, 2013.

[10] D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia, Investigating the near-criticality of the Higgs boson, J. High Energy Phys. 12 (2013) 089, arXiv:1307.3536.

[11] V. Branchina, E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801, arXiv:1307.5193.

[12] A. Kobakhidze, A. Spencer-Smith, The Higgs vacuum is unstable, arXiv:1404.4709, 2014.

[13] A. Spencer-Smith, Higgs vacuum stability in a mass-dependent renormalisation scheme, arXiv:1405.1975, 2014.

[14] V. Branchina, E. Messina, A. Platania, Top mass determination, Higgs inflation, and vacuum stability, arXiv:1407. 4112, 2014.

[15] V. Branchina, E. Messina, M. Sher, The lifetime of the electroweak vacuum and sensitivity to Planck scale physics, arXiv:1408.5302, 2014.

[16] A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision, Phys. Rev. Lett. 115 (20) (2015) 201802, arXiv:1507.08833.

[17] J.A. Casas, V. Di Clemente, A. Ibarra, M. Quiros, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005, arXiv:hep-ph/9904295.

[18] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222–228, arXiv:1112.3022.

[19] C.-S. Chen, Y. Tang, Vacuum stability, neutrinos, and dark matter, J. High Energy Phys. 04 (2012) 019, arXiv: 1202.5717.

[20] W. Rodejohann, H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stabil- ity, J. High Energy Phys. 06 (2012) 022, arXiv:1203.3825.

[21] C.D. Froggatt, H.B. Nielsen, Standard model criticality prediction: top mass 173 5-GeV and Higgs mass 135 9-GeV, Phys. Lett. B 368 (1996) 96–102, arXiv:hep-ph/9511371.

[22] C. Froggatt, H.B. Nielsen, Y. Takanishi, Standard model Higgs boson mass from borderline metastability of the vacuum, Phys. Rev. D 64 (2001) 113014, arXiv:hep-ph/0104161.

[23] H.B. Nielsen, PREdicted the Higgs mass, High Energy Phys. - Phenomenol 13 (2012) 94–126, arXiv:1212.5716.

[24] N. Haba, H. Ishida, N. Okada, Y. Yamaguchi, Multiple-point principle with a scalar singlet extension of the Standard Model, PTEP 2017 (1) (2017) 013B03, arXiv:1608.00087.

[25] N. Haba, T. Yamada, Multiple-point principle realized with strong dynamics, Phys. Rev. D 95 (11) (2017) 115015, arXiv:1703.04235.

[26] K.A. Meissner, H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260–266, arXiv:0710.2840.

[27] R. Foot, A. Kobakhidze, K.L. McDonald, R.R. Volkas, A solution to the hierarchy problem from an almost decou- pled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006, arXiv:0709.2750.

[28] S. Iso, N. Okada, Y. Orikasa, Classically conformal B L extended Standard Model, Phys. Lett. B 676 (2009) 81–87, arXiv:0902.4050.

[29] S. Iso, N. Okada, Y. Orikasa, The minimal B L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007, arXiv:0909.0128.

[30] T. Hur, P. Ko, Scale invariant extension of the Standard Model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802, arXiv:1103.2571.

[31] S. Iso, Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scale - in view of the hierarchy problem, PTEP 2013 (2013) 023B08, arXiv:1210.2848.

[32] M. Hashimoto, S. Iso, Y. Orikasa, Radiative symmetry breaking from flat potential in various U(1)’ models, Phys. Rev. D 89 (5) (2014) 056010, arXiv:1401.5944.

[33] P.H. Chankowski, A. Lewandowski, K.A. Meissner, H. Nicolai, Softly broken conformal symmetry and the stability of the electroweak scale, arXiv:1404.0548, 2014.

[34] A. Kobakhidze, K.L. McDonald, Comments on the hierarchy problem in effective theories, arXiv:1404.5823, 2014.

[35] A. Gorsky, A. Mironov, A. Morozov, T. Tomaras, Is the Standard Model saved asymptotically by conformal sym- metry?, Zh. Eksp. Teor. Fiz. 147 (2015) 399–409, arXiv:1409.0492.

[36] J. Kubo, K.S. Lim, M. Lindner, Electroweak symmetry breaking via QCD, Phys. Rev. Lett. 113 (2014) 091604, arXiv:1403.4262.

[37] R. Foot, A. Kobakhidze, A. Spencer-Smith, Criticality in the scale invariant Standard Model (squared), arXiv: 1409.4915, 2014.

[38] K. Kawana, Criticality and inflation of the gauged B-L model, arXiv:1501.04482, 2015.

[39] A. Latosinski, A. Lewandowski, K.A. Meissner, H. Nicolai, Conformal Standard Model with an extended scalar sector, J. High Energy Phys. 10 (2015) 170, arXiv:1507.01755.

[40] N. Haba, H. Ishida, R. Takahashi, Y. Yamaguchi, Gauge coupling unification in a classically scale invariant model, J. High Energy Phys. 02 (2016) 058, arXiv:1511.02107.

[41] N. Haba, H. Ishida, N. Kitazawa, Y. Yamaguchi, A new dynamics of electroweak symmetry breaking with classically scale invariance, Phys. Lett. B 755 (2016) 439–443, arXiv:1512.05061.

[42] J. Kubo, M. Yamada, Scale genesis and gravitational wave in a classically scale invariant extension of the Standard Model, J. Cosmol. Astropart. Phys. 1612 (12) (2016) 001, arXiv:1610.02241.

[43] N. Haba, T. Yamada, Strong dynamics in a classically scale invariant extension of the Standard Model with a flat potential, Phys. Rev. D 95 (11) (2017) 115016, arXiv:1701.02146.

[44] S. Iso, P.D. Serpico, K. Shimada, QCD-electroweak first-order phase transition in a supercooled universe, Phys. Rev. Lett. 119 (14) (2017) 141301, arXiv:1704.04955.

[45] A. Lewandowski, K.A. Meissner, H. Nicolai, Conformal Standard Model, leptogenesis and dark matter, arXiv: 1710.06149, 2017.

[46] M. Shaposhnikov, C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196–200, arXiv:0912.0208.

[47] C. Wetterich, M. Yamada, Gauge hierarchy problem in asymptotically safe gravity–the resurgence mechanism, Phys. Lett. B 770 (2017) 268–271, arXiv:1612.03069.

[48] A. Eichhorn, Y. Hamada, J. Lumma, M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs- potential, arXiv:1712.00319, 2017.

[49] Y. Kawamura, Naturalness, conformal symmetry and duality, PTEP 2013 (11) (2013) 113B04, arXiv:1308.5069.

[50] Y. Kawamura, Gauge hierarchy problem, supersymmetry and fermionic symmetry, arXiv:1311.2365, 2013.

[51] H. Kawai, T. Okada, Solving the naturalness problem by baby universes in the Lorentzian multiverse, Prog. Theor. Phys. 127 (2012) 689–721, arXiv:1110.2303.

[52] H. Kawai, Low energy effective action of quantum gravity and the naturalness problem, Int. J. Mod. Phys. A 28 (2013) 1340001.

[53] Y. Hamada, H. Kawai, K. Kawana, Evidence of the big fix, Int. J. Mod. Phys. A 29 (17) (2014) 1450099, arXiv: 1405.1310.

[54] K. Kawana, Reconsideration of the Coleman’s Baby Universe, arXiv:1405.2743, 2014.

[55] Y. Hamada, H. Kawai, K. Kawana, Weak scale from the maximum entropy principle, PTEP 2015 (3) (2014) 033B06, arXiv:1409.6508.

[56] Y. Hamada, H. Kawai, K.-y. Oda, S.C. Park, Higgs inflation still alive, Phys. Rev. Lett. 112 (2014) 241301, arXiv: 1403.5043.

[57] Fedor Bezrukov, Mikhail Shaposhnikov, Higgs inflation at the critical point, arXiv:1403.6078, 2014.

[58] Y. Hamada, H. Kawai, K.-y. Oda, S.C. Park, Higgs inflation from Standard Model criticality, Phys. Rev. D 91 (2015) 053008, arXiv:1408.4864.

[59] J.L. Cook, L.M. Krauss, A.J. Long, S. Sabharwal, Is Higgs inflation ruled out?, Phys. Rev. D 89 (10) (2014) 103525, arXiv:1403.4971.

[60] D.S. Salopek, J.R. Bond, J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989) 1753.

[61] F. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703–706, arXiv:0710.3755.

[62] Y. Hamada, H. Kawai, K.-y. Oda, Minimal Higgs inflation, PTEP 2014 (2014) 023B02, arXiv:1308.6651.

[63] Y. Hamada, H. Kawai, K.-y. Oda, Eternal Higgs inflation and the cosmological constant problem, Phys. Rev. D 92 (2015) 045009, arXiv:1501.04455.

[64] V. Silveira, A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136.

[65] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.

[66] C. Burgess, M. Pospelov, T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.

[67] H. Davoudiasl, R. Kitano, T. Li, H. Murayama, The new minimal Standard Model, Phys. Lett. B 609 (2005) 117–123, arXiv:hep-ph/0405097.

[68] B. Patt, F. Wilczek, Higgs-field portal into hidden sectors, arXiv:hep-ph/0605188, 2006.

[69] B. Grzadkowski, J. Wudka, Pragmatic approach to the little hierarchy problem: the case for dark matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802, arXiv:0902.0628.

[70] A. Drozd, B. Grzadkowski, J. Wudka, Multi-scalar-singlet extension of the Standard Model - the case for dark matter and an invisible Higgs boson, J. High Energy Phys. 1204 (2012) 006, arXiv:1112.2582.

[71] N. Haba, K. Kaneta, R. Takahashi, Planck scale boundary conditions in the Standard Model with singlet scalar dark matter, J. High Energy Phys. 1404 (2014) 029, arXiv:1312.2089.

[72] S. Baek, P. Ko, W.-I. Park, Invisible Higgs decay width vs. dark matter direct detection cross section in Higgs portal dark matter models, Phys. Rev. D 90 (5) (2014) 055014, arXiv:1405.3530.

[73] J. Kim, P. Ko, W.-I. Park, Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio, J. Cosmol. Astropart. Phys. 1702 (02) (2017) 003, arXiv:1405.1635.

[74] J.M. Cline, K. Kainulainen, P. Scott, C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025, arXiv:1306.4710; Erratum: Phys. Rev. D 92 (3) (2015) 039906.

[75] Y. Hamada, H. Kawai, K.-y. Oda, Predictions on mass of Higgs portal scalar dark matter from Higgs inflation and flat potential, J. High Energy Phys. 07 (2014) 026, arXiv:1404.6141.

[76] PandaX-II, X. Cui, et al., Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (18) (2017) 181302, arXiv:1708.06917.

[77] P. Minkowski, μ eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421–428.

[78] T. Yanagida, in: O. Sawada, A. Sugamoto (Eds.), Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Tokyo, 1979, p. 95; M. Gell-Mann, P. Ramond, R. Slanski, in: P. van Nieuwenhuizen, D. Freedman (Eds.), Supergravity, North-Holland, Amsterdam, 1979, arXiv:1306.4669; S.L. Glashow, in: M. Lévy, et al. (Eds.), Proceedings of the Cargése Summer Institute on Quarks and Leptons, Cargése, July 9–29, 1979, Plenum, New York, 1980, p. 707; R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912.

[79] Planck, P.A.R. Ade, et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20, arXiv:1502.02114.

[80] LUX, D.S. Akerib, et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2) (2017) 021303, arXiv:1608.07648.

[81] XENON, E. Aprile, et al., First dark matter search results from the XENON1T experiment, arXiv:1705.06655, 2017.

[82] Particle Data Group, C. Patrignani, et al., Review of particle physics, Chin. Phys. C 40 (10) (2016) 100001.

[83] G. Cortiana, Top-quark mass measurements: review and perspectives, Rev. Phys. 1 (2016) 60–76, arXiv:1510.04483.

[84] Planck, P.A.R. Ade, et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589.

[85] POLARBEAR, Y. Inoue, et al., POLARBEAR-2: an instrument for CMB polarization measurements, Proc. SPIE Int. Soc. Opt. Eng. 9914 (2016), 99141I, arXiv:1608.03025.

[86] T. Matsumura, et al., Mission design of LiteBIRD, J. Low Temp. Phys. 176 (2013) 733, arXiv:1311.2847, 2014.

[87] CORE, J. Delabrouille, et al., Exploring cosmic origins with CORE: survey requirements and mission design, arXiv:1706.04516, 2017.

[88] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, Global constraints on absolute neutrino masses and their ordering, arXiv:1703.04471, 2017.

[89] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, K. Freese, Improvement of cosmological neutrino mass bounds, Phys. Rev. D 94 (8) (2016) 083522, arXiv:1605.04320.

[90] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, M. Lattanzi, Unveiling ν secrets with cosmo- logical data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (12) (2017) 123503, arXiv:1701.08172.

[91] CMS Collaboration, Updates on projections of physics reach with the upgraded CMS detector for High luminosity LHC, https://cds.cern.ch/record/2221747, 2016.

[92] XENON, E. Aprile, et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (11) (2018) 111302, arXiv:1805.12562.

[93] Y. Hamada, H. Kawai, Y. Nakanishi, K.-y. Oda, Meaning of the field dependence of the renormalization scale in Higgs inflation, Phys. Rev. D 95 (10) (2017) 103524, arXiv:1610.05885.

[94] N. Haba, H. Ishida, R. Takahashi, Higgs inflation and Higgs portal dark matter with right-handed neutrinos, PTEP 2015 (5) (2015) 053B01, arXiv:1405.5738.

[95] K. Kawana, Multiple point principle of the Standard Model with scalar singlet dark matter and right handed neutri- nos, PTEP 2015 (2015) 023B04, arXiv:1411.2097.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る