リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「余剰次元模型における隠れた超対称性とフェルミオン世代構造」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

余剰次元模型における隠れた超対称性とフェルミオン世代構造

Ueba, Inori 上場, 一慶 ウエバ, イノリ 神戸大学

2021.03.25

概要

In this dissertation, we clarify hidden supersymmetries and the fermion generation structure in extra dimensional models.

Extra dimensional models could solve problems left in the Standard Model (SM) and are promising candidates of beyond the SM. We decompose higher dimensional fields in extra di- mensional models into Kaluza–Klein (KK) mode functions, and derive 4D effective theories with an infinite number of 4D fields. In these effective theories, we regard massless 4D fields as the ones in the SM and massive fields correspond to new particles. Although many proposals have been made, we have not obtained the sufficient models which unifiedly explain the mysteries in the SM yet. In extra dimensional models, 4D effective theories greatly depend on a geometry and boundary conditions of extra dimensions. Therefore, to construct phenomenological models with extra dimensions, we should reveal the theoretical structure in extra dimensional models from the viewpoint of a geometry and boundary conditions, and clarify when the SM is realized and what new particles appear in the 4D effective theories. These are the main purposes in this dissertation.

Here we focus on the structure of the supersymmetric quantum mechanics (SUSY QM) in the 4D mass spectrum obtained from higher dimensional Dirac fields. We show that the structure of = 2 SUSY QM exists in any extra dimensional models with Dirac fields, which results from the requirement that the mass terms of 4D spinors should consist of the pair of 4D left and right- handed chiral fields. The supercharge in this SUSY QM relates the KK mode functions for 4D left and right-handed chiral fields and explains the 2-fold degeneracy of them. In addition to this 2-fold degeneracy, more degeneracies generally exist in the 4D mass spectrum due to the degrees of freedom of the extra space. We will reveal the structure of -extended SUSY QM hidden in these degeneracies, and show that the supercharges relate additionally degenerate KK mode functions.

Furthermore, the = 2 SUSY QM indicates that the number of massless 4D chiral fields is re- lated to the topology in extra dimensions. Then, we study the 5D Dirac fermion on quantum graph to investigate the topology and construct the phenomenological models from the viewpoint of gen- eral 1D extra spaces. We clarify the allowed boundary conditions and show that the chiral fermions appear from the topology of the boundary conditions on quantum graph. It is also found that this model could naturally solve the problems of the fermion generation, fermion mass hierarchy, the origin of the flavor mixing and CP-violating phase.

参考文献

[1] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[3] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.

[4] V. Rubakov and M. Shaposhnikov, “Do We Live Inside a Domain Wall?,” Phys. Lett. B 125 (1983) 136–138.

[5] L. Randall and R. Sundrum, “An Alternative to compactification,” Phys. Rev. Lett. 83 (1999) 4690–4693, arXiv:hep-th/9906064.

[6] T. Kaluza, “Zum Unita¨tsproblem der Physik,” Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1921 (1921) 966–972.

[7] O. Klein, “Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English),” Z. Phys. 37 (1926) 895–906.

[8] C. S. Lim, T. Nagasawa, M. Sakamoto, and H. Sonoda, “Supersymmetry in gauge theories with extra dimensions,” Phys. Rev. D72 (2005) 064006, arXiv:hep-th/0502022 [hep-th].

[9] C. S. Lim, T. Nagasawa, S. Ohya, K. Sakamoto, and M. Sakamoto, “Supersymmetry in 5d gravity,” Phys. Rev. D77 (2008) 045020, arXiv:0710.0170 [hep-th].

[10] C. S. Lim, T. Nagasawa, S. Ohya, K. Sakamoto, and M. Sakamoto, “Gauge-Fixing and Residual Symmetries in Gauge/Gravity Theories with Extra Dimensions,” Phys. Rev. D77 (2008) 065009, arXiv:0801.0845 [hep-th].

[11] T. Nagasawa, S. Ohya, K. Sakamoto, and M. Sakamoto, “Emergent Supersymmetry in Warped Backgrounds,” SIGMA 7 (2011) 065, arXiv:1105.4829 [hep-th].

[12] M. Sakamoto, “Hidden quantum-mechanical supersymmetry in extra dimensions,” in 13th Regional Conference on Mathematical Physics, pp. 207–226. 2012. arXiv:1201.2448 [hep-th].

[13] Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, and K. Tatsumi, “Supersymmetry in the 6D Dirac action,” PTEP 2017 no. 7, (2017) 073B03, arXiv:1609.04565 [hep-th].

[14] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The Hierarchy problem and new dimensions at a millimeter,” Phys. Lett. B429 (1998) 263–272, arXiv:hep-ph/9803315 [hep-ph].

[15] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221 [hep-ph].

[16] H. Hatanaka, T. Inami, and C. Lim, “The Gauge hierarchy problem and higher dimensional gauge theories,” Mod. Phys. Lett. A 13 (1998) 2601–2612, arXiv:hep-th/9805067.

[17] G. R. Dvali and M. A. Shifman, “Families as neighbors in extra dimension,” Phys. Lett. B475 (2000) 295–302, arXiv:hep-ph/0001072 [hep-ph].

[18] A. Neronov, “Fermion masses and quantum numbers from extra dimensions,” Phys. Rev. D 65 (2002) 044004, arXiv:gr-qc/0106092.

[19] D. E. Kaplan and T. M. P. Tait, “New tools for fermion masses from extra dimensions,” JHEP 11 (2001) 051, arXiv:hep-ph/0110126 [hep-ph].

[20] M. V. Libanov and S. V. Troitsky, “Three fermionic generations on a topological defect in extra dimensions,” Nucl. Phys. B599 (2001) 319–333, arXiv:hep-ph/0011095 [hep-ph].

[21] J. M. Frere, M. V. Libanov, and S. V. Troitsky, “Three generations on a local vortex in extra dimensions,” Phys. Lett. B512 (2001) 169–173, arXiv:hep-ph/0012306 [hep-ph].

[22] M. Gogberashvili, P. Midodashvili, and D. Singleton, “Fermion Generations from ’Apple-Shaped’ Extra Dimensions,” JHEP 08 (2007) 033, arXiv:0706.0676 [hep-th].

[23] C. Csaki, J. Heinonen, J. Hubisz, S. C. Park, and J. Shu, “5D UED: Flat and Flavorless,” JHEP 01 (2011) 089, arXiv:1007.0025 [hep-ph].

[24] D. B. Kaplan and S. Sun, “Spacetime as a topological insulator: Mechanism for the origin of the fermion generations,” Phys. Rev. Lett. 108 (2012) 181807, arXiv:1112.0302 [hep-ph].

[25] D. Cremades, L. Ibanez, and F. Marchesano, “Computing Yukawa couplings from magnetized extra dimensions,” JHEP 0405 (2004) 079, arXiv:hep-th/0404229 [hep-th].

[26] H. Abe, T. Kobayashi, and H. Ohki, “Magnetized orbifold models,” JHEP 0809 (2008) 043, arXiv:0806.4748 [hep-th].

[27] H. Abe, K.-S. Choi, T. Kobayashi, and H. Ohki, “Three generation magnetized orbifold models,” Nucl.Phys. B814 (2009) 265–292, arXiv:0812.3534 [hep-th].

[28] T.-H. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, and M. Sakamoto, “ZN twisted orbifold models with magnetic flux,” JHEP 01 (2014) 065, arXiv:1309.4925 [hep-th].

[29] Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, and M. Sakamoto, “Shifted orbifold models with magnetic flux,” Phys. Rev. D87 no. 8, (2013) 086001, arXiv:1302.5768 [hep-th].

[30] T.-h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, and M. Sakamoto, “Operator analysis of physical states on magnetized T 2/ZN orbifolds,” Nucl. Phys. B890 (2014) 442–480, arXiv:1409.5421 [hep-th].

[31] H. Abe, T. Kobayashi, K. Sumita, and Y. Tatsuta, “Gaussian Froggatt-Nielsen mechanism on magnetized orbifolds,” Phys. Rev. D90 no. 10, (2014) 105006, arXiv:1405.5012 [hep-ph].

[32] T.-h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, M. Sakamoto, and Y. Tatsuta, “Classification of three-generation models on magnetized orbifolds,” Nucl. Phys. B894 (2015) 374–406, arXiv:1501.02787 [hep-ph].

[33] Y. Fujimoto, T. Kobayashi, K. Nishiwaki, M. Sakamoto, and Y. Tatsuta, “Comprehensive analysis of Yukawa hierarchies on T 2/ZN with magnetic fluxes,” Phys. Rev. D94 no. 3, (2016) 035031, arXiv:1605.00140 [hep-ph].

[34] Y. Sakamura, “Spectrum in the presence of brane-localized mass on torus extra dimensions,” JHEP 10 (2016) 083, arXiv:1607.07152 [hep-th].

[35] T. Kobayashi, K. Nishiwaki, and Y. Tatsuta, “CP-violating phase on magnetized toroidal orbifolds,” JHEP 04 (2017) 080, arXiv:1609.08608 [hep-th].

[36] M. Ishida, K. Nishiwaki, and Y. Tatsuta, “Brane-localized masses in magnetic compactifications,” Phys. Rev. D 95 no. 9, (2017) 095036, arXiv:1702.08226 [hep-th].

[37] W. Buchmuller and J. Schweizer, “Flavor mixings in flux compactifications,” Phys. Rev. D95 no. 7, (2017) 075024, arXiv:1701.06935 [hep-ph].

[38] M. Ishida, K. Nishiwaki, and Y. Tatsuta, “Seesaw mechanism in magnetic compactifications,” JHEP 07 (2018) 125, arXiv:1802.06646 [hep-ph].

[39] H. Abe, T. Kobayashi, S. Takada, S. Tamba, and T. H. Tatsuishi, “Quark mass matrices in magnetized orbifold models with localized Fayet-Iliopoulos terms,” Phys. Rev. D 98 no. 10, (2018) 106017, arXiv:1807.02063 [hep-th].

[40] H. Abe, M. Ishida, and Y. Tatsuta, “Effects of localized µ-terms at the fixed points in magnetized orbifold models,” Nucl. Phys. B 947 (2019) 114732, arXiv:1806.10369 [hep-th].

[41] Y. Fujimoto, T. Nagasawa, K. Nishiwaki, and M. Sakamoto, “Quark mass hierarchy and mixing via geometry of extra dimension with point interactions,” PTEP 2013 (2013) 023B07, arXiv:1209.5150 [hep-ph].

[42] Y. Fujimoto, K. Nishiwaki, and M. Sakamoto, “CP phase from twisted Higgs vacuum expectation value in extra dimension,” Phys. Rev. D88 no. 11, (2013) 115007, arXiv:1301.7253 [hep-ph].

[43] Y. Fujimoto, K. Nishiwaki, M. Sakamoto, and R. Takahashi, “Realization of lepton masses and mixing angles from point interactions in an extra dimension,” JHEP 10 (2014) 191, arXiv:1405.5872 [hep-ph].

[44] T. Fulop and I. Tsutsui, “A Free particle on a circle with point interaction,” Phys. Lett. A 264 (2000) 366, arXiv:quant-ph/9910062.

[45] T. Cheon, T. Fulop, and I. Tsutsui, “Symmetry, duality and anholonomy of point interactions in one-dimension,” Annals Phys. 294 (2001) 1–23, arXiv:quant-ph/0008123.

[46] E. Witten, “Dynamical Breaking of Supersymmetry,” Nucl. Phys. B188 (1981) 513.

[47] F. Cooper, A. Khare, and U. Sukhatme, “Supersymmetry and quantum mechanics,” Phys. Rept. 251 (1995) 267–385, arXiv:hep-th/9405029 [hep-th].

[48] B. Bagchi, C. Quesne, and R. Roychoudhury, “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry,” Pramana 73 (2009) 337–347, arXiv:0812.1488 [quant-ph].

[49] S. Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal polynomials,” Phys. Lett. B679 (2009) 414–417, arXiv:0906.0142 [math-ph].

[50] D. J. Fernandez C., “Supersymmetric Quantum Mechanics,” AIP Conf. Proc. 1287 (2010) 3–36, arXiv:0910.0192 [quant-ph].

[51] C. Pedder, J. Sonner, and D. Tong, “The Geometric Phase in Supersymmetric Quantum Mechanics,” Phys. Rev. D77 (2008) 025009, arXiv:0709.0731 [hep-th].

[52] S. Ohya, “Non-Abelian Monopole in the Parameter Space of Point-like Interactions,” Annals Phys. 351 (2014) 900–913, arXiv:1406.4857 [hep-th].

[53] S. Ohya, “BPS Monopole in the Space of Boundary Conditions,” J. Phys. A48 no. 50, (2015) 505401, arXiv:1506.04738 [hep-th].

[54] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend, and A. Van Proeyen, “Black holes and superconformal mechanics,” Phys. Rev. Lett. 81 (1998) 4553–4556, arXiv:hep-th/9804177 [hep-th].

[55] G. W. Gibbons and P. K. Townsend, “Black holes and Calogero models,” Phys. Lett. B454 (1999) 187–192, arXiv:hep-th/9812034 [hep-th].

[56] R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, “Lectures on Superconformal Quantum Mechanics and Multi-Black Hole Moduli Spaces,” NATO Sci. Ser. C 556 (2000) 255–284, arXiv:hep-th/9911066 [hep-th].

[57] S. Bellucci, A. Galajinsky, E. Ivanov, and S. Krivonos, “AdS(2) / CFT(1), canonical transformations and superconformal mechanics,” Phys. Lett. B555 (2003) 99–106, arXiv:hep-th/0212204 [hep-th].

[58] I. Bakas, “Energy-momentum/Cotton tensor duality for AdS(4) black holes,” JHEP 01 (2009) 003, arXiv:0809.4852 [hep-th].

[59] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, “Supersymmetric Sachdev-Ye-Kitaev models,” Phys. Rev. D95 no. 2, (2017) 026009, arXiv:1610.08917 [hep-th].

[60] T. Li, J. Liu, Y. Xin, and Y. Zhou, “Supersymmetric SYK model and random matrix theory,” JHEP 06 (2017) 111, arXiv:1702.01738 [hep-th].

[61] J. Yoon, “Supersymmetric SYK Model: Bi-local Collective Superfield/Supermatrix Formulation,” JHEP 10 (2017) 172, arXiv:1706.05914 [hep-th].

[62] J. Murugan, D. Stanford, and E. Witten, “More on Supersymmetric and 2d Analogs of the SYK Model,” JHEP 08 (2017) 146, arXiv:1706.05362 [hep-th].

[63] N. Hunter-Jones and J. Liu, “Chaos and random matrices in supersymmetric SYK,” JHEP 05 (2018) 202, arXiv:1710.08184 [hep-th].

[64] Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, and K. Tatsumi, “6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum,” Nucl. Phys. B922 (2017) 186–225, arXiv:1609.01413 [hep-th].

[65] A. Pashnev and F. Toppan, “On the classification of N extended supersymmetric quantum mechanical systems,” J. Math. Phys. 42 (2001) 5257–5271, arXiv:hep-th/0010135 [hep-th].

[66] Z. Kuznetsova, M. Rojas, and F. Toppan, “Classification of irreps and invariants of the N-extended supersymmetric quantum mechanics,” JHEP 03 (2006) 098, arXiv:hep-th/0511274 [hep-th].

[67] M. Faux and S. J. Gates, Jr., “Adinkras: A Graphical technology for supersymmetric representation theory,” Phys. Rev. D71 (2005) 065002, arXiv:hep-th/0408004 [hep-th].

[68] M. de Crombrugghe and V. Rittenberg, “Supersymmetric Quantum Mechanics,” Annals Phys. 151 (1983) 99.

[69] P. S. Howe, S. Penati, M. Pernici, and P. K. Townsend, “Wave Equations for Arbitrary Spin From Quantization of the Extended Supersymmetric Spinning Particle,” Phys. Lett. B215 (1988) 555–558.

[70] V. Akulov and M. Kudinov, “Extended supersymmetric quantum mechanics,” Phys. Lett. B460 (1999) 365–370, arXiv:hep-th/9905070 [hep-th].

[71] T. Nagasawa, M. Sakamoto, and K. Takenaga, “Supersymmetry and discrete transformations on S 1 with point singularities,” Phys. Lett. B583 (2004) 357–363, arXiv:hep-th/0311043 [hep-th].

[72] T. Nagasawa, M. Sakamoto, and K. Takenaga, “Extended supersymmetry and its reduction on a circle with point singularities,” J. Phys. A38 (2005) 8053–8082, arXiv:hep-th/0505132 [hep-th].

[73] E. A. Ivanov, S. O. Krivonos, and A. I. Pashnev, “Partial supersymmetry breaking in N=4 supersymmetric quantum mechanics,” Class. Quant. Grav. 8 (1991) 19–40.

[74] J. Niederle and A. G. Nikitin, “Extended SUSY with Central Charges in Quantum Mechanics,” Proceedings of Institute of Mathematics of NAS of Ukraine 43 (2002) 497–507.

[75] M. Faux and D. Spector, “Duality and central charges in supersymmetric quantum mechanics,” Phys. Rev. D70 (2004) 085014, arXiv:hep-th/0311095 [hep-th].

[76] S. Bellucci, S. Krivonos, and A. Shcherbakov, “Two-dimensional N=8 supersymmetric mechanics in superspace,” Phys. Lett. B612 (2005) 283–292, arXiv:hep-th/0502245 [hep-th].

[77] E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topological Charges,” Phys. Lett. 78B (1978) 97–101.

[78] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD,” Nucl. Phys. B431 (1994) 484–550, arXiv:hep-th/9408099 [hep-th].

[79] N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994) 19–52, arXiv:hep-th/9407087 [hep-th].

[80] Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, K. Tatsumi, and I. Ueba, “Extended supersymmetry in Dirac action with extra dimensions,” J. Phys. A51 no. 43, (2018) 435201, arXiv:1804.02626 [hep-th].

[81] Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, K. Tatsumi, and I. Ueba, “Extended supersymmetry with central charges in higher dimensional Dirac action,” Phys. Rev. D99 no. 6, (2019) 065002, arXiv:1812.11282 [hep-th].

[82] I. Ueba, “Extended supersymmetry with central charges in Dirac action with curved extra dimensions,” Phys. Rev. D 100 no. 10, (2019) 105001, arXiv:1905.11673 [hep-th].

[83] N. Arkani-Hamed and M. Schmaltz, “Hierarchies without symmetries from extra dimensions,” Phys. Rev. D61 (2000) 033005, arXiv:hep-ph/9903417 [hep-ph].

[84] T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice of AdS,” Nucl. Phys. B586 (2000) 141–162, arXiv:hep-ph/0003129 [hep-ph].

[85] S. J. Huber and Q. Shafi, “Fermion masses, mixings and proton decay in a Randall-Sundrum model,” Phys. Lett. B498 (2001) 256–262, arXiv:hep-ph/0010195 [hep-ph].

[86] Y. Fujimoto, T. Nagasawa, S. Ohya, and M. Sakamoto, “Phase Structure of Gauge Theories on an Interval,” Prog. Theor. Phys. 126 (2011) 841–854, arXiv:1108.1976 [hep-th].

[87] P. Kuchment, “Quantum graphs: I. some basic structures,” Waves in Random Media 14 no. 1, (2004) S107–S128.

[88] P. Kuchment, “Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs,” Journal of Physics A: Mathematical and General 38 no. 22, (2005) 4887–4900, arxiv:math-ph/0411003 [math-ph].

[89] G. Berkolaiko and J. P. Keating, “Two-point spectral correlations for star graphs,” Journal of Physics A: Mathematical and General 32 no. 45, (1999) 7827–7841.

[90] B. Bellazzini, M. Burrello, M. Mintchev, and P. Sorba, “Quantum Field Theory on Star Graphs,” Proc. Symp. Pure Math. 77 (2008) 639, arXiv:0801.2852 [hep-th].

[91] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja, “Fast solitons on star graphs,” Rev. Math. Phys. 23 (2011) 409–451, arXiv:1004.2455 [math-ph].

[92] Y. Fujimoto, K. Konno, T. Nagasawa, and R. Takahashi, “Quantum Reflection and Transmission in Ring Systems with Double Y-Junctions: Occurrence of Perfect Reflection,” J. Phys. A 53 no. 15, (2020) 155302, arXiv:1812.05749 [quant-ph].

[93] S. Dimopoulos, S. Kachru, N. Kaloper, A. E. Lawrence, and E. Silverstein, “Generating small numbers by tunneling in multithroat compactifications,” Int. J. Mod. Phys. A19 (2004) 2657–2704, arXiv:hep-th/0106128 [hep-th].

[94] H. D. Kim, “Hiding an extra dimension,” JHEP 01 (2006) 090, arXiv:hep-th/0510229 [hep-th].

[95] G. Cacciapaglia, C. Csaki, C. Grojean, and J. Terning, “Field Theory on Multi-throat Backgrounds,” Phys. Rev. D74 (2006) 045019, arXiv:hep-ph/0604218 [hep-ph].

[96] A. Bechinger and G. Seidl, “Resonant Dirac leptogenesis on throats,” Phys. Rev. D81 (2010) 065015, arXiv:0907.4341 [hep-ph].

[97] S. Abel and J. Barnard, “Strong coupling, discrete symmetry and flavour,” JHEP 08 (2010) 039, arXiv:1005.1668 [hep-ph].

[98] S. S. C. Law and K. L. McDonald, “Broken Symmetry as a Stabilizing Remnant,” Phys. Rev. D82 (2010) 104032, arXiv:1008.4336 [hep-ph].

[99] F. Nortier, “Large star/rose extra dimension with small leaves/petals,” Int. J. Mod. Phys. A 35 no. 30, (2020) 2050182, arXiv:2001.07102 [hep-ph].

[100] T. Nagasawa, M. Sakamoto, and K. Takenaga, “Supersymmetry in quantum mechanics with point interactions,” Phys. Lett. B562 (2003) 358–364, arXiv:hep-th/0212192 [hep-th].

[101] T. Nagasawa, M. Sakamoto, and K. Takenaga, “Supersymmetry and discrete transformations on S 1 with point singularities,” Phys. Lett. B583 (2004) 357–363, arXiv:hep-th/0311043 [hep-th].

[102] T. Nagasawa, M. Sakamoto, and K. Takenaga, “Extended supersymmetry and its reduction on a circle with point singularities,” J. Phys. A38 (2005) 8053–8082, arXiv:hep-th/0505132 [hep-th].

[103] Y. Fujimoto, T. Miura, K. Nishiwaki, and M. Sakamoto, “Dynamical generation of fermion mass hierarchy in an extra dimension,” Phys. Rev. D97 no. 11, (2018) 115039, arXiv:1709.05693 [hep-th].

[104] V. Kostrykin and R. Schrader, “Kirchoff’s rule for quantum wires,” J. Phys. A32 (1999) 595–630.

[105] F. Wilczek and A. Zee, “Appearance of Gauge Structure in Simple Dynamical Systems,” Phys. Rev. Lett. 52

(1984) 2111–2114.

[106] K. Inoue, “Generations of quarks and leptons from noncompact horizontal symmetry,” Prog. Theor. Phys. 93 (1995) 403–416, arXiv:hep-ph/9410220 [hep-ph].

[107] K. Inoue and N.-a. Yamashita, “Mass hierarchy from SU(1,1) horizontal symmetry,” Prog. Theor. Phys. 104 (2000) 677–689, arXiv:hep-ph/0005178 [hep-ph].

[108] K. Inoue and N.-a. Yamashita, “Neutrino masses and mixing matrix from SU(1,1) horizontal symmetry,” Prog. Theor. Phys. 110 (2004) 1087–1094, arXiv:hep-ph/0305297 [hep-ph].

[109] K. Inoue and N. Yamatsu, “Charged lepton and down-type quark masses in SU(1,1) model and the structure of higgs sector,” Prog. Theor. Phys. 119 (2008) 775–796, arXiv:0712.2938 [hep-ph].

[110] N. Yamatsu, “New Mixing Structures of Chiral Generations in a Model with Noncompact Horizontal Symmetry,” PTEP 2013 (2013) 023B03, arXiv:1209.6318 [hep-ph].

[111] G. Panico and A. Pomarol, “Flavor hierarchies from dynamical scales,” JHEP 07 (2016) 097, arXiv:1603.06609 [hep-ph].

[112] K. Agashe, P. Du, S. Hong, and R. Sundrum, “Flavor Universal Resonances and Warped Gravity,” JHEP 01 (2017) 016, arXiv:1608.00526 [hep-ph].

[113] L. Da Rold, “Anarchy with linear and bilinear interactions,” JHEP 10 (2017) 120, arXiv:1708.08515 [hep-ph].

[114] A. Ahmed, A. Carmona, J. Castellano Ruiz, Y. Chung, and M. Neubert, “Dynamical origin of fermion bulk masses in a warped extra dimension,” JHEP 08 (2019) 045, arXiv:1905.09833 [hep-ph].

[115] E. Ponton and E. Poppitz, “Casimir energy and radius stabilization in five-dimensional orbifolds and six-dimensional orbifolds,” JHEP 06 (2001) 019, arXiv:hep-ph/0105021.

[116] L. C. de Albuquerque and R. Cavalcanti, “Casimir effect for the scalar field under Robin boundary conditions: A Functional integral approach,” J. Phys. A 37 (2004) 7039–7050, arXiv:hep-th/0311052.

[117] J. Garriga, O. Pujolas, and T. Tanaka, “Radion effective potential in the brane world,” Nucl. Phys. B 605 (2001) 192–214, arXiv:hep-th/0004109.

[118] W. D. Goldberger and I. Z. Rothstein, “Quantum stabilization of compactified AdS(5),” Phys. Lett. B 491 (2000) 339–344, arXiv:hep-th/0007065.

[119] R. Hofmann, P. Kanti, and M. Pospelov, “(De)stabilization of an extra dimension due to a Casimir force,” Phys. Rev. D 63 (2001) 124020, arXiv:hep-ph/0012213.

[120] Y. Abe, T. Inami, Y. Kawamura, and Y. Koyama, “Radion stabilization in the presence of a Wilson line phase,” PTEP 2014 no. 7, (2014) 073B04, arXiv:1404.5125 [hep-th].

[121] C. Cai and H.-H. Zhang, “Majorana neutrinos with point interactions,” Phys. Rev. D93 no. 3, (2016) 036003, arXiv:1503.08805 [hep-ph].

[122] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3, (2018) 030001.

[123] E. T. Newman and R. Penrose, “Note on the Bondi-Metzner-Sachs group,” J. Math. Phys. 7 (1966) 863–870.

[124] G. F. Torres del Castillo, “3-d spinors, spin-weighted functions and their applications,” Birkha¨user, Boston, 2003. .

[125] H. Dohi, T. Kakuda, K. Nishiwaki, K.-y. Oda, and N. Okuda, “Notes on sphere-based universal extra dimensions,” Afr. Rev. Phys. 9 (2014) 0069, arXiv:1406.1954 [hep-ph].

[126] S. Randjbar-Daemi, A. Salam, and J. A. Strathdee, “Spontaneous Compactification in Six-Dimensional Einstein-Maxwell Theory,” Nucl. Phys. B214 (1983) 491–512.

[127] A. J. Bruce, “On a Zn-Graded Version of Supersymmetry,” Symmetry 11 no. 1, (2019) 116, arXiv:1812.02943 [hep-th].

[128] A. J. Bruce and S. Duplij, “Double-Graded Supersymmetric Quantum Mechanics,” J. Math. Phys. 61 no. 6, (2020) 063503, arXiv:1904.06975 [math-ph].

[129] N. Aizawa, K. Amakawa, and S. Doi, “ -extension of double-graded supersymmetric and superconformal quantum mechanics,” J. Phys. A 53 no. 6, (2020) 065205, arXiv:1905.06548 [math-ph].

[130] P.A.M. Dirac, “Quantized singularities in the electromagnetic field,” Proc. Royal Soc. London A133 (1931) 60.

[131] T. T. Wu and C. N. Yang, “Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields,” Phys. Rev. D 12 (1975) 3845–3857.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る